1. Roda, D.; Trzciński, K.; Łapiński, M.; et al. The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance. Sci. Rep. 2023, 13, 21263.
2. Zhang, G.; Wu, H.; Chen, D.; et al. A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application. Green. Energy. Environ. 2022, 7, 176-204.
3. Song, Y.; Zhang, J.; Dong, X.; Li, H. A review and recent developments in full-spectrum photocatalysis using ZnIn2S4-based photocatalysts. Energy. Tech. 2021, 9, 2100033.
4. Feng, C.; Wu, Z. P.; Huang, K. W.; Ye, J.; Zhang, H. Surface modification of 2D photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2200180.
5. Yang, L.; Li, F.; Xiang, Q. Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting. Mater. Horiz. 2024, 11, 1638-57.
6. Gong, Y.; Liu, J.; Shao, B.; Zhong, D.; Lu, T. Stable metal-organic frameworks for PEC water splitting. FlatChem 2021, 27, 100240.
7. Xu, X. T.; Pan, L.; Zhang, X.; Wang, L.; Zou, J. J. Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv. Sci. 2019, 6, 1801505.
8. Sun, J.; Wang, J.; Zhang, X.; et al. Using VO2 as a hole storage layer to improve PEC water splitting performance of BiVO4 photoanode. Int. J. Hydrogen. Energy. 2024, 69, 95-102.
9. Dong, G.; Yan, L.; Bi, Y. Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. J. Mater. Chem. A. 2023, 11, 3888-903.
10. Song, Y.; Ren, Y.; Cheng, H.; et al. Metal-organic framework glass catalysts from melting glass-forming cobalt-based zeolitic imidazolate framework for boosting photoelectrochemical water oxidation. Angew. Chem. Int. Ed. 2023, 62, e202306420.
11. Singh, I.; Bhullar, V.; Mahajan, A. Interfacial engineering of a TiO2 photoanode via graphene nanoribbons for efficient quantum-dot-sensitized solar cells and photoelectrochemical water splitting. Energy. Fuels. 2023, 37, 15054-66.
12. Feng, Y.; Guan, L.; Li, J.; et al. Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting. J. Mater. Sci. Mater. Electron. 2020, 31, 14137-44.
13. Krysiak, O. A.; Junqueira, J. R.; Conzuelo, F.; et al. Importance of catalyst-photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J. Solid. State. Electrochem. 2021, 25, 173-85.
14. Choi, M. J.; Kim, T. L.; Choi, K. S.; et al. Controlled band offsets in ultrathin hematite for enhancing the photoelectrochemical water splitting performance of heterostructured photoanodes. ACS. Appl. Mater. Interfaces. 2022, 14, 7788-95.
15. Zheng, X.; Song, Y.; Liu, Y.; et al. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coord. Chem. Rev. 2023, 475, 214898.
16. Yan, Y.; Chen, Z.; Cheng, X.; Shi, W. Research progress of ZnIn2S4-based catalysts for photocatalytic overall water splitting. Catalysts 2023, 13, 967.
17. Long, C.; Dong, X.; Huang, J. Latest progress on photocatalytic H2 production by water splitting and H2 production coupled with selective oxidation of organics over ZnIn2S4-based photocatalysts. Energy. Fuels. 2023, 37, 136-58.
18. Ren, Y.; Foo, J. J.; Zeng, D.; Ong, W. ZnIn2S4-based nanostructures in artificial photosynthesis: insights into photocatalytic reduction toward sustainable energy production. Small. Struct. 2022, 3, 2200017.
19. Khosya, M.; Kumar, D.; Faraz, M.; Khare, N. Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite. Int. J. Hydrogen. Energy. 2023, 48, 2518-31.
20. Mahadik, M. A.; Shinde, P. S.; Cho, M.; Jang, J. S. Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance. Appl. Catal. B. Environ. 2016, 184, 337-46.
21. Pan, F.; Long, L.; Li, Z.; et al. Substitutional Cd dopant as photohole transfer mediator boosting photoelectrochemical solar energy conversion of 2D Cd-ZnIn2S4 photoanode. Small 2024, 20, 2304846.
22. Lin, Y.; Fang, W.; Xv, R.; Fu, L. TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: type II heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting. Int. J. Hydrogen. Energy. 2022, 47, 33361-73.
23. Chen, J.; Li, K.; Cai, X.; Zhao, Y.; Gu, X.; Mao, L. Sulfur vacancy-rich ZnIn2S4 nanosheet arrays for visible-light-driven water splitting. Mater. Sci. Semicond. Process. 2022, 143, 106547.
24. Song, Y.; Zheng, X.; Yang, Y.; et al. Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution. Adv. Mater. 2024, 36, 2305835.
25. Bao, Z.; Jiang, Y.; Zhang, Z.; et al. Visible-light-responsive S-vacancy ZnIn2S4/N-doped TiO2 nanoarray heterojunctions for high-performance photoelectrochemical water splitting. J. Mater. Chem. A. 2024, 12, 15902-13.
26. Wang, J.; Sun, S.; Zhou, R.; et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J. Mater. Sci. Technol. 2021, 78, 1-19.
27. Lee, J.; Kim, H.; Lee, T.; Jang, W.; Lee, K. H.; Soon, A. Revisiting polytypism in hexagonal ternary sulfide ZnIn2S4 for photocatalytic hydrogen production within the Z-scheme. Chem. Mater. 2019, 31, 9148-55.
28. Yang, W.; Liu, B.; Fang, T.; et al. Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties. Nanoscale 2016, 8, 18197-203.
29. Wang, J.; Chen, Y.; Zhou, W.; et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A. 2017, 5, 8451-60.
30. Luan, Q.; Xue, X.; Li, R.; et al. Boosting photocatalytic hydrogen evolution: orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects. Appl. Catal. B. Environ. 2022, 305, 121007.
31. Chong, W.; Ng, B.; Kong, X. Y.; Tan, L.; Putri, L. K.; Chai, S. Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation. Appl. Catal. B. Environ. 2023, 325, 122372.
32. Zhang, W.; Zhao, S.; Xing, Y.; et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution. Chem. Eng. J. 2022, 442, 136151.
33. Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution. J. Materi. Sci. Technol. 2022, 122, 231-42.
34. Hao, C.; Tang, Y.; Shi, W.; Chen, F.; Guo, F. Facile solvothermal synthesis of a Z-scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation. Chem. Eng. J. 2021, 409, 128168.
35. Alshgari, R. A.; Kumar, O. P.; Shah, J. H.; Mohammad, S.; Abid, A. G. Nanosphere-like ZnIn2S4 intercalated g-C3N4 for improved green oxygen production. J. Korean. Ceram. Soc. 2024, 61, 1013-26.
36. Li, H.; Chen, Z.; Zhao, L.; Yang, G. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare. Met. 2019, 38, 420-7.
37. Ye, L.; Li, Z. ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light. ChemCatChem 2014, 6, 2540-3.
38. Gou, X.; Cheng, F.; Shi, Y.; et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc. 2006, 128, 7222-9.
39. Geng, H.; Ying, P.; Li, K.; Zhao, Y.; Gu, X. Epitaxial In2S3/ZnIn2S4 heterojunction nanosheet arrays on FTO substrates for photoelectrochemical water splitting. Appl. Surf. Sci. 2021, 563, 150289.
40. Kale, B. B.; Bhirud, A. P.; Baeg, J. O.; Kulkarni, M. V. Template free architecture of hierarchical nanostructured ZnIn2S4 rose-like flowers for solar hydrogen production. J. Nanosci. Nanotechnol. 2017, 17, 1447-454.
41. Zhou, M. J.; Cui, P. Synthesis and photocatalytic properties of flower-like ZnIn2S4 microspheres by a solvothermal method. Adv. Mater. Res. 2013, 881-3, 1101-4.
42. Huang, Y.; He, J.; Xu, W.; et al. Converting Undesirable defects into activity sites enhances the photoelectrochemical performance of the ZnIn2S4 photoanode. Adv. Energy. Mater. 2024, 14, 2304376.
43. Cheng, K.; Liang, C. Preparation of Zn-In-S film electrodes using chemical bath deposition for photoelectrochemical applications. Sol. Energy. Mater. Sol. Cells. 2010, 94, 1137-45.
44. Sun, Y.; Xue, C.; Chen, L.; et al. Enhancement of interfacial charge transportation through construction of 2D-2D p-n heterojunctions in hierarchical 3D CNFs/MoS2/ZnIn2S 4 composites to enable high-efficiency photocatalytic hydrogen evolution. Solar. RRL. 2021, 5, 2000722.
45. Gao, Y.; Ji, X.; Zhang, D.; Liu, Z.; Lu, J. Microwave-assisted fabrication of CQDs/ZnIn2S4 nanocomposites for synergistic photocatalytic removal of Cr(VI) and rhodamine B. Inorg. Nano-Metal. Chem. 2021, 51, 451-7.
46. Chen, Z.; Li, D.; Xiao, G.; He, Y.; Xu, Y. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. J. Solid. State. Chem. 2012, 186, 247-54.
47. Mahadik, M. A.; Patil, R. P.; Chae, W.; Hwi, L. H.; Cho, M.; Suk, J. J. Microwave-assisted rapid synthesis of Cu2S:ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization. J. Ind. Eng. Chem. 2022, 108, 203-14.
48. Chang, Y. C.; Bi, J. N.; Pan, K. Y.; Chiao, Y. C. Microwave-assisted synthesis of SnO2@ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. Materials 2024, 17, 2367.
49. Mishra, M.; Huang, Y. C.; Wang, P. H.; Liu, S. P.; Lee, T. R.; Lee, T. C. Tuning the crystallinity and coverage of SiO2-ZnIn2S4 core-shell nanoparticles for efficient hydrogen generation. ACS. Appl. Mater. Interfaces. 2021, 13, 4043-50.
50. Sun, M.; Zhao, X.; Zeng, Q.; et al. Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity. Appl. Surf. Sci. 2017, 407, 328-36.
51. Bedala, K. K.; Gonugunta, P.; Soleimani, M.; et al. Facile synthesis of ZnIn2S4/Cu2O hierarchical heterostructures for enhanced selectivity and sensitivity of NH3 gas at room temperature. Appl. Surf. Sci. 2023, 640, 158315.
52. Xu, Z.; Shi, W.; Shi, Y.; et al. Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution. Appl. Surf. Sci. 2022, 595, 153482.
53. Chen, W.; Yan, R.; Zhu, J.; Huang, G.; Chen, Z. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl. Surf. Sci. 2020, 504, 144406.
54. Yang, R.; Mei, L.; Fan, Y.; et al. ZnIn2S4-based photocatalysts for energy and environmental applications. Small. Methods. 2021, 5, 2100887.
55. Fang, W.; Liu, J.; Zhang, Y.; et al. Alkaline induced indium gradient distribution in ZnmIn2S3+m/In(OH)3 heterojunction for improved photocatalytic H2 generation. Appl. Surf. Sci. 2020, 530, 147241.
56. Pan, Y.; Yuan, X.; Jiang, L.; et al. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chem. Eng. J. 2018, 354, 407-31.
57. Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. D. Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation. Adv. Mater. 2019, 31, 1903404.
58. Huang, L.; Han, B.; Huang, X.; et al. Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light. J. Alloys. Compd. 2019, 798, 553-9.
59. Chen, Y.; Huang, R.; Chen, D.; et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. ACS. Appl. Mater. Interfaces. 2012, 4, 2273-9.
60. Uddin, A.; Muhmood, T.; Guo, Z.; Gu, J.; Chen, H.; Jiang, F. Hydrothermal synthesis of 3D/2D heterojunctions of ZnIn2S4/oxygen doped g-C3N4 nanosheet for visible light driven photocatalysis of 2,4-dichlorophenoxyacetic acid degradation. J. Alloys. Compd. 2020, 845, 156206.
61. Xu, L.; Deng, X.; Li, Z. Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl. Catal. B. Environ. 2018, 234, 50-5.
62. Li, M.; Ke, S.; Yang, X.; Shen, L.; Yang, M. Q. S-scheme homojunction of 0D cubic/2D hexagonal ZnIn2S4 for efficient photocatalytic reduction of nitroarenes. J. Colloid. Interface. Sci. 2024, 674, 547-59.
63. Wang, S.; Guan, B. Y.; Lou, X. W. D. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037-40.
64. Zuo, G.; Wang, Y.; Teo, W. L.; Xian, Q.; Zhao, Y. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B. Environ. 2021, 291, 120126.
65. Chen, Y.; Wang, M.; He, B.; Zou, R.; Wu, Q. Facile design and fabrication of RP/ZnIn2S4 composite photocatalysts with efficient removal of antibiotics under visible-light irradiation. J. Alloys. Compd. 2023, 968, 171972.
66. Tu, B.; Che, R.; Wang, F.; Li, Y.; Li, J.; Qiu, J. New insights into the enhancement of TiO2/ZnIn2S4 heterojunction via cerium doping. Appl. Surf. Sci. 2023, 629, 157451.
67. Zhou, F.; Zhang, Y.; Wu, J.; et al. Utilizing Er-doped ZnIn2S4 for efficient photocatalytic CO2 conversion. Appl. Catal. B. Environ. 2024, 341, 123347.
68. Khosya, M.; Faraz, M.; Khare, N. Enhanced photoelectrochemical water splitting in ternary layered chalcogenide ZnIn2S4 coupled with MWCNT. Nano. Trends. 2023, 4, 100018.
69. Zhou, M.; Liu, Z.; Song, Q.; Li, X.; Chen, B.; Liu, Z. Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting. Appl. Catal. B. Environ. 2019, 244, 188-96.
70. Zhang, S.; Du, P.; Xiao, H.; et al. Fast interfacial carrier dynamics modulated by bidirectional charge transport channels in ZnIn2S4-based composite photoanodes probed by scanning photoelectrochemical microscopy. Angew. Chem. Int. Ed. 2024, 63, e202315763.
71. Li, J.; Wang, C.; Guo, Z.; Ruan, M. Piezoelectric effect promoted photoelectrochemical water splitting ability of ZnIn2S4 photoanode with highly exposed active (110) facets. ChemCatChem 2024, 16, e202301318.
72. Li, S.; Meng, L.; Tian, W.; Li, L. Engineering interfacial band bending over ZnIn2S4/SnS2 by interface chemical bond for efficient solar-driven photoelectrochemical water splitting. Adv. Energy. Mater. 2022, 12, 2200629.
73. Lv, G.; Long, L.; Wu, X.; et al. Realizing highly efficient photoelectrochemical performance for vertically aligned 2D ZnIn2S4 array photoanode via controlled facet and phase modulation. Appl. Surf. Sci. 2023, 609, 155335.
74. Khosya, M.; Kumar, D.; Faraz, M.; Khare, N. Visible light active ZnIn2S4/g-C3N4 heterostructure nanocomposite photoelectrode for efficient photoelectrochemical water splitting activity. Adv. Powder. Technol. 2023, 34, 104051.
75. Hao, Z.; Wang, R.; Zhang, L.; et al. Sufficient energy band utilization profited from spatially discrete heterogeneous interfaces to induce efficient photoelectrochemical water splitting for ZnIn2S4 photoanode. Surf. Interfaces. 2024, 51, 104667.
76. Wang, L.; Zheng, M.; Lai, L.; et al. Immobilization of prussian blue nanoparticles onto Au-modified ZnIn2S4 photoanode for efficient photoelectrochemical water splitting. Eur. J. Inorg. Chem. 2024, 27, e202400007.
77. Fan, B.; Chen, Z.; Liu, Q.; Zhang, Z.; Fang, X. One-pot hydrothermal synthesis of Ni-doped ZnIn2S4 nanostructured film photoelectrodes with enhanced photoelectrochemical performance. Appl. Surf. Sci. 2016, 370, 252-9.
78. Qian, H.; Liu, Z.; Guo, Z.; Ruan, M.; Ma, J. Hexagonal phase/cubic phase homogeneous ZnIn2S4 n-n junction photoanode for efficient photoelectrochemical water splitting. J. Alloys. Compd. 2020, 830, 154639.
79. Qian, H.; Liu, Z.; Ya, J.; Xin, Y.; Ma, J.; Wu, X. Construction homojunction and co-catalyst in ZnIn2S4 photoelectrode by Co ion doping for efficient photoelectrochemical water splitting. J. Alloys. Compd. 2021, 867, 159028.
80. Wu, Y.; Yao, S.; Lv, G.; et al. Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. J. Catal. 2021, 401, 262-70.
81. Xu, W.; Gao, W.; Meng, L.; Tian, W.; Li, L. Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting. Adv. Energy. Mater. 2021, 11, 2101181.
82. Wu, K.; Yao, C.; Wu, P.; et al. Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni-ZnIn2S4 nanosheets. Appl. Phys. A. 2022, 128, 6055.
83. Fan, H.; Jin, Y.; Liu, K.; Liu, W. One-step MOF-templated strategy to fabrication of Ce-doped ZnIn2S4 tetrakaidecahedron hollow nanocages as an efficient photocatalyst for hydrogen evolution. Adv. Sci. 2022, 9, 2104579.
84. Zhou, D.; Xue, X.; Wang, X.; et al. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: modulating charge flow and balancing H adsorption/desorption. Appl. Catal. B. Environ. 2022, 310, 121337.
85. Dong, W.; Zhou, S.; Ma, Y.; et al. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare. Met. 2023, 42, 1195-204.
86. Shi, X.; Dai, C.; Wang, X.; et al. Facile construction TiO2/ZnIn2S4/Zn0.4Ca0.6In2S4 ternary hetero-structure photo-anode with enhanced photo-electrochemical water-splitting performance. Surf. Interfaces. 2021, 26, 101323.
87. Hu, Z.; Wang, R.; Han, C.; Chen, R. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting. J. Colloid. Interface. Sci. 2022, 628, 946-54.
88. Zhao, Y.; Linghu, X.; Shu, Y.; et al. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. J. Environ. Chem. Eng. 2022, 10, 108077.
89. Yue, Y.; Zou, J. Oxygen vacancy-suppression strengthened the internal electric field in ZnIn2S4/BiVO4 S-scheme heterojunction to boost photocatalytic removal of aqueous pollutants. J. Environ. Chem. Eng. 2024, 12, 113473.
90. Wang, S.; Zhang, D.; Pu, X.; Zhang, L.; Zhang, D.; Jiang, J. Photothermal-enhanced S-scheme heterojunction of hollow core-shell FeNi2S4@ZnIn2S4 toward photocatalytic hydrogen evolution. Small 2024, 20, 2311504.
91. Liu, D.; Jiang, L.; Chen, D.; et al. Twin S-scheme g-C3N4/CuFe2O4/ZnIn2S4 heterojunction with a self-supporting three-phase system for photocatalytic CO2 reduction: mechanism insight and DFT calculations. ACS. Catal. 2024, 14, 5326-43.
92. Wang, H.; Ning, Y.; Tang, Q.; et al. Ultrathin 2D/2D ZnIn2S4/La2Ti2O7 nanosheets with a Z-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Dalton. Trans. 2024, 53, 13491-502.
93. Xu, W.; Tian, W.; Meng, L.; Cao, F.; Li, L. Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting. Adv. Energy. Mater. 2021, 11, 2003500.
94. Li, J.; Wu, C.; Li, J.; Dong, B.; Zhao, L.; Wang, S. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chin. J. Catal. 2022, 43, 339-49.
95. Yue, Y.; Zou, J. Boosting interfacial charge separation for ZnIn2S4 homojunction by lattice matching effect to enhance photocatalytic performance. J. Alloys. Compd. 2023, 966, 171659.
96. Wang, H.; Li, M.; You, Z.; Chen, Y.; Liu, Y. An innovative Zn3In2S6/ZnIn2S4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation. J. Environ. Manage. 2024, 365, 121605.
97. Jiang, Z.; Li, K.; Cai, X.; et al. Enhanced performance of FeOOH/ZnIn2S4/Au nanosheet arrays for visible light water splitting. J. Mater. Sci. Mater. Electron. 2022, 33, 6070-81.
98. Li, C.; Liu, X.; Ding, G.; et al. Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution. Inorg. Chem. 2022, 61, 4681-9.
99. Wang, G.; Sun, X.; Xia, C.; Li, H.; Dong, B.; Cao, L. Sulfur poisoning-resistant TiO2/Cu-doped ZnIn2S4 photoanode for achieving efficient sulfur oxidation. Colloids. Surf. A. Physicochem. Eng. Aspects. 2024, 689, 133656.
100. Peng, Y.; Guo, X.; Xu, S.; et al. Surface modulation of MoS2/O-ZnIn2S4 to boost photocatalytic H2 evolution. J. Energy. Chem. 2022, 75, 276-84.
101. Zhao, H.; Yao, Y.; Cai, M.; et al. Synergistic selenium doping and colloidal quantum dots decoration over ZnIn2S4 enabling high-efficiency photoelectrochemical hydrogen peroxide production. Chem. Eng. J. 2024, 491, 151925.
102. Jeong, Y. J.; Tan, R.; Nam, S.; et al. Rapid surface reconstruction of In2S3 photoanode via flame treatment for enhanced photoelectrochemical performance. Adv. Mater. 2024, 2403164.
103. Gao, L.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428-69.
104. Guo, W.; Dun, C.; Yang, F.; et al. Robust interfacial effect in multi-interface environment through hybrid reconstruction chemistry for enhanced energy storage. ACS. Nano. 2023, 17, 25357-67.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.