REFERENCES
1. Zhang, Y.; Mei, H.; Cao, Y.; et al. Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 2021, 438, 213910.
2. Da, S. L. M.; Cesar, R.; Moreira, C. M.; et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy. Storage. Mater. 2020, 27, 555-90.
3. Acharya, D.; Pathak, I.; Dahal, B.; et al. Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon 2023, 201, 12-23.
4. Zhu, Y.; Lu, P.; Li, F.; Ding, Y.; Chen, Y. Metal-rich porous copper cobalt phosphide nanoplates as a high-rate and stable battery-type cathode material for battery-supercapacitor hybrid devices. ACS. Appl. Energy. Mater. 2021, 4, 3962-74.
5. Zhang, Y.; Jing, X.; Yan, X.; et al. Rational design of NiMn-based electrode materials for high-performance supercapacitors. Coord. Chem. Rev. 2024, 499, 215494.
6. Patil, S. S.; Patil, P. S. Status review of nickel phosphides for hybrid supercapacitors. Nanoscale 2022, 14, 16731-48.
7. Wen, J.; Xu, B.; Zhou, J. Toward flexible and wearable embroidered supercapacitors from cobalt phosphides-decorated conductive fibers. Nanomicro. Lett. 2019, 11, 89.
8. Nallapureddy, J.; Pallavolu, M. R.; Srinivasa, B. P. S.; Al-asbahi, B. A.; Joo, S. W. Designed construction of hierarchical cobalt sulfide nanonetwork as a high-capacity and binder-free cathode for hybrid supercapacitors. Energy. Fuels. 2023, 37, 17535-44.
9. Wu, Y.; Tao, X.; Qing, Y.; et al. Cr-doped FeNi-P nanoparticles encapsulated into N-doped carbon nanotube as a robust bifunctional catalyst for efficient overall water splitting. Adv. Mater. 2019, 31, e1900178.
10. Zhao, Z.; Miao, Y.; Lu, Q. Electrospun nickel cobalt phosphide/carbon nanofibers as high-performance electrodes for supercapacitors. J. Power. Sources. 2024, 606, 234587.
11. Hussain, N.; Abbas, Z.; Ansari, S. N.; Kedarnath, G.; Mobin, S. M. Phosphorization engineering on a MOF-derived metal phosphide heterostructure (Cu/Cu3P@NC) as an electrode for enhanced supercapacitor performance. Inorg. Chem. 2023, 62, 17083-92.
12. Lu, W.; Yan, L.; Ye, W.; Ning, J.; Zhong, Y.; Hu, Y. Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. J. Mater. Chem. A. 2022, 10, 15267-96.
13. Zhang, Y.; Tao, L.; Xie, C.; et al. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, e1905923.
14. Zhang, A.; Gao, R.; Hu, L.; et al. Rich bulk oxygen vacancies-engineered MnO2 with enhanced charge transfer kinetics for supercapacitor. Chem. Eng. J. 2021, 417, 129186.
15. Fu, Y.; Gao, X.; Zha, D.; Zhu, J.; Ouyang, X.; Wang, X. Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J. Mater. Chem. A. 2018, 6, 1601-11.
16. Hong, Z.; Zhang, S.; Xia, Y.; et al. Nickel-doped cobalt phosphide with phosphorus-vacancy-abundant as an efficient catalyst for non-aqueous and quasi-solid-state Li-O2 batteries. Mater. Today. Energy. 2024, 43, 101597.
17. Li, K.; Guo, Z.; Sun, Q.; et al. Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 2023, 454, 140223.
18. Zhang, Q.; Zhang, W.; Ma, X.; et al. Boosting pseudocapacitive energy storage performance via both phosphorus vacancy defect and charge injection technique over the CoP electrode. J. Alloys. Compd. 2021, 864, 158106.
19. Wang, X.; Li, W.; Xu, Y.; et al. NiCoP/C composite with hollow sphere as electrodes for high performance supercapacitors. Electrochim. Acta. 2022, 434, 141313.
20. Tian, W.; Ren, P.; Hou, X.; et al. MnO2 porous carbon composite from cellulose enabling high gravimetric/volumetric performance for supercapacitor. Int. J. Biol. Macromol. 2024, 261, 129977.
21. Zhang, H.; Guo, H.; Zhang, J.; et al. NiCo-MOF directed NiCoP and coconut shell derived porous carbon as high-performance supercapacitor electrodes. J. Energy. Storage. 2022, 54, 105356.
22. Yi, M.; Lu, B.; Zhang, X.; et al. Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. Appl. Catal. B. Environ. 2021, 283, 119635.
23. Qian, J.; Sun, L.; Shi, X.; et al. Dispersive NiCoP/LDO heterostructure nanosheets scattered by CNTs enabling high-performance electrochemical energy storage. Chem. Eng. J. 2022, 429, 132482.
24. Du, M.; Geng, P.; Feng, W.; Xu, H.; Li, B.; Pang, H. In situ phosphorization for constructing Ni5P2-Ni heterostructure derived from bimetallic MOF for Li-S batteries. Small 2024, 20, e2401587.
25. Cui, Z.; Zheng, W.; Meng, T.; et al. Molecular level heterojunction with sulfur vacancy of stable polyhedral star configuration for boosting hydroxide ion storage. Energy. Storage. Mater. 2024, 71, 103681.
26. Li, Q.; Gao, A.; Meng, T.; et al. Metal-organic framework derived functional MnO2 via an in-situ oxidation strategy for advanced quasi-solid-state supercapacitors. J. Power. Sources. 2023, 560, 232705.
27. Ling, J.; Gao, A.; Huang, Y.; et al. Self-templated and triethanolamine-induced hollow MnO2 nanoboxes with abundant active Mn3+ and oxygen vacancies for high-performance Na-ion pseudocapacitors. Chem. Eng. J. 2023, 452, 139661.
28. Wang, G.; Yi, F.; Zhong, J.; et al. Towards high-performance supercapacitor electrodes via achieving 3D cross-network and favorable surface chemistry. ACS. Appl. Mater. Interfaces. 2022, 14, 34637-48.
29. Shen, K.; Chen, X.; Chen, J.; Li, Y. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS. Catal. 2016, 6, 5887-903.
30. Li, J.; Yan, D.; Hou, S.; Lu, T.; Yao, Y.; Pan, L. Metal-organic frameworks converted flower-like hybrid with Co3O4 nanoparticles decorated on nitrogen-doped carbon sheets for boosted lithium storage performance. Chem. Eng. J. 2018, 354, 172-81.
31. Zhang, N.; Li, Y.; Xu, J.; et al. High-performance flexible solid-state asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS. Nano. 2019, 13, 10612-21.
32. Lin, Y.; Chen, X.; Tuo, Y.; Pan, Y.; Zhang, J. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor. J. Energy. Chem. 2022, 70, 27-35.
33. Wang, X.; Liu, X.; Wu, S.; et al. Phosphorus vacancies enriched cobalt phosphide embedded in nitrogen doped carbon matrix enabling seawater splitting at ampere-level current density. Nano. Energy. 2023, 109, 108292.
34. Yang, H.; Xiong, T.; Zhu, Z.; et al. Deciphering the lithium storage chemistry in flexible carbon fiber‐based self‐supportive electrodes. Carbon. Energy. 2022, 4, 820-32.
35. Lin, J.; Yan, Y.; Xu, T.; et al. Rich P vacancies modulate Ni2P/Cu3P interfaced nanosheets for electrocatalytic alkaline water splitting. J. Colloid. Interface. Sci. 2020, 564, 37-42.
36. Jiang, L.; Jiang, L.; Luo, X.; et al. Iron-induced vacancy and electronic regulation of nickle phosphides for ampere-level alkaline water/seawater splitting. Chem. Eng. J. 2024, 502, 157952.
37. Ding, H.; Xu, L.; Wen, C.; et al. Surface and interface engineering of MoNi alloy nanograins bound to Mo-doped NiO nanosheets on 3D graphene foam for high-efficiency water splitting catalysis. Chem. Eng. J. 2022, 440, 135847.
38. Qian, Q.; Zhang, J.; Li, J.; et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem. Int. Ed. 2021, 60, 5984-93.
39. Li, Y.; Liu, J.; Chen, C.; Zhang, X.; Chen, J. Preparation of NiCoP hollow quasi-polyhedra and their electrocatalytic properties for hydrogen evolution in alkaline solution. ACS. Appl. Mater. Interfaces. 2017, 9, 5982-91.
40. Zhang, X.; Xue, H.; Sun, J.; et al. Synergy of phosphorus vacancies and build-in electric field into NiCo/NiCoP mott-schottky integrated electrode for enhanced water splitting performance. Chinese. Chem. Lett. 2024, 35, 108519.
41. Sun, R.; Bai, Y.; Bai, Z.; et al. Phosphorus vacancies as effective polysulfide promoter for high‐energy‐density lithium-sulfur batteries. Adv. Energy. Mater. 2022, 12, 2102739.
42. Li, C.; Zhang, H.; Liu, M.; Lang, F.; Pang, J.; Bu, X. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind. Chem. Mater. 2023, 1, 9-38.
43. Han, Q.; Zhao, X.; Luo, Y.; et al. Synergistic binary Fe-Co nanocluster supported on defective tungsten oxide as efficient oxygen reduction electrocatalyst in zinc-air battery. Adv. Sci. 2022, 9, e2104237.
44. Wang, X.; Jing, C.; Zhang, W.; et al. One-step phosphorization synthesis of CoP@NiCoP nanowire/nanosheet composites hybrid arrays on Ni foam for high-performance supercapacitors. Appl. Surf. Sci. 2020, 532, 147437.
45. Li, X.; Elshahawy, A. M.; Guan, C.; Wang, J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 2017, 13.
46. Xu, W.; Wang, T.; Wang, H.; et al. Free-standing amorphous nanoporous nickel cobalt phosphide prepared by electrochemically delloying process as a high performance energy storage electrode material. Energy. Storage. Mater. 2019, 17, 300-8.
47. Zhang, G.; Hu, J.; Nie, Y.; et al. Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors. Adv. Funct. Mater. 2021, 31, 2100290.
48. Ren, X.; Li, M.; Qiu, L.; et al. Cationic vacancies and interface engineering on crystalline-amorphous gamma-phase Ni-Co oxyhydroxides achieve ultrahigh mass/areal/volumetric energy density flexible all-solid-state asymmetric supercapacitor. J. Mater. Chem. A. 2023, 11, 5754-65.
49. Jing, C.; Song, X.; Li, K.; et al. Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. J. Mater. Chem. A. 2020, 8, 1697-708.
50. Zhang, Y.; Sun, L.; Zhang, L.; et al. Highly porous oxygen-doped NiCoP immobilized in reduced graphene oxide for supercapacitive energy storage. Compos. Part. B. Eng. 2020, 182, 107611.
51. Wang, M.; Zhong, J.; Zhu, Z.; et al. Hollow NiCoP nanocubes derived from a Prussian blue analogue self-template for high-performance supercapacitors. J. Alloys. Compd. 2022, 893, 162344.
52. He, S.; Li, Z.; Mi, H.; et al. 3D nickel-cobalt phosphide heterostructure for high-performance solid-state hybrid supercapacitors. J. Power. Sources. 2020, 467, 228324.
53. Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A. 2018, 6, 17905-14.
54. Zhang, X.; Zhang, L.; Xu, G.; Zhao, A.; Zhang, S.; Zhao, T. Template synthesis of structure-controlled 3D hollow nickel-cobalt phosphides microcubes for high-performance supercapacitors. J. Colloid. Interface. Sci. 2020, 561, 23-31.
55. Fu, M.; Chen, W.; Lei, Y.; Yu, H.; Lin, Y.; Terrones, M. Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 2023, 35, e2300940.
56. Pan, L.; Hu, R.; Zhang, Y.; et al. Built-in electric field-driven ultrahigh-rate K-ion storage via heterostructure engineering of dual tellurides integrated with Ti3C2Tx MXene. Nano-Micro. Lett. 2023, 15, 225.
57. Wang, Q.; Yang, H.; Meng, T.; et al. Boosting electron transfer with heterointerface effect for high-performance lithium-ion storage. Energy. Storage. Mater. 2021, 36, 365-75.
58. Li, P.; Han, Y.; Yan, F.; Yan, L.; Huang, H.; Zhou, W. Engineering NiCoP arrays by cross-linked nanowires and nanosheets as advanced materials for hybrid supercapacitors. J. Energy. Storage. 2021, 38, 102503.
59. Gopalakrishnan, A.; Yang, D.; Ince, J. C.; Truong, Y. B.; Yu, A.; Badhulika, S. Facile one-pot synthesis of hollow NiCoP nanospheres via thermal decomposition technique and its free-standing carbon composite for supercapacitor application. J. Energy. Storage. 2019, 25, 100893.