REFERENCES

1. Morales-Guio, C. G.; Stern, L. A.; Hu, X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-69.

2. Ďurovič, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. J. Power. Sources. 2021, 493, 229708.

3. Shang, X.; Tang, J.; Dong, B.; Sun, Y. Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustain. Energy. Fuels. 2020, 4, 3211-28.

4. Li, X.; Zhao, L.; Yu, J.; et al. Water splitting: from electrode to green energy system. Nanomicro. Lett. 2020, 12, 131.

5. Ahmed, I.; Biswas, R.; Iqbal, M.; Roy, A.; Haldar, K. K. NiS/MoS2 anchored multiwall carbon nanotube electrocatalyst for hydrogen generation and energy storage applications. ChemNanoMat 2023, 9, e202200550.

6. Mistry, K.; Jalja; Lakhani, R.; Tripathi, B.; Shinde, S.; Chandra, P. Recent trends in MXene/Metal chalcogenides for electro-/photocatalytic hydrogen evolution reactions. Int. J. Hydrogen. Energy. 2022, 47, 41711-32.

7. Shah, S. A.; Shen, X.; Xie, M.; et al. Nickel@Nitrogen-doped carbon@MoS2 nanosheets: an efficient electrocatalyst for hydrogen evolution reaction. Small 2019, 15, e1804545.

8. Liu, G.; Thummavichai, K.; Lv, X.; et al. Defect-rich heterogeneous MoS2/rGO/NiS nanocomposite for efficient pH-universal hydrogen evolution. Nanomaterials 2021, 11, 662.

9. Lin, J.; Wang, P.; Wang, H.; et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 2019, 6, 1900246.

10. Zhang, J.; Wang, Y.; Cui, J.; et al. In-situ synthesis of carbon-coated β-NiS nanocrystals for hydrogen evolution reaction in both acidic and alkaline solution. Int. J. Hydrogen. Energy. 2018, 43, 16061-7.

11. Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

12. Strmcnik, D.; Lopes, P. P.; Genorio, B.; Stamenkovic, V. R.; Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano. Energy. 2016, 29, 29-36.

13. Han, N.; Zhang, X.; Zhang, C.; et al. Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Matter 2024, 7, 1330-43.

14. Hua, W.; Sun, H.; Xu, F.; Wang, J. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare. Met. 2020, 39, 335-51.

15. Qin, Q.; Chen, L.; Wei, T.; Liu, X. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor. Small 2019, 15, e1803639.

16. Koh EW, Chiu CH, Lim YK, Zhang Y, Pan H. Hydrogen adsorption on and diffusion through MoS2 monolayer: first-principles study. Int. J. Hydrogen. Energy. 2012, 37, 14323-8.

17. Liu, Q.; Fang, Q.; Chu, W.; et al. Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 2017, 29, 4738-44.

18. Xie, J.; Zhang, J.; Li, S.; et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881-8.

19. Kim, Y.; Jackson, D. H. K.; Lee, D.; et al. In situ electrochemical activation of atomic layer deposition coated MoS2 basal planes for efficient hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1701825.

20. Geng, S.; Liu, Y.; Yu, Y. S.; Yang, W.; Li, H. Engineering defects and adjusting electronic structure on S doped MoO2 nanosheets toward highly active hydrogen evolution reaction. Nano. Res. 2020, 13, 121-6.

21. Meng, X.; Yu, L.; Ma, C.; et al. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano. Energy. 2019, 61, 611-6.

22. Sun, Y.; Alimohammadi, F.; Zhang, D.; Guo, G. Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis. Nano. Lett. 2017, 17, 1963-9.

23. Li, W.; Zhang, Z.; Zhang, W.; Zou, S. MoS2 nanosheets supported on hollow carbon spheres as efficient catalysts for electrochemical hydrogen evolution reaction. ACS. Omega. 2017, 2, 5087-94.

24. Zhang, X.; Hua, S.; Lai, L.; et al. Strategies to improve electrocatalytic performance of MoS2-based catalysts for hydrogen evolution reactions. RSC. Adv. 2022, 12, 17959-83.

25. Li, Z.; Xu, Y.; Ren, X.; Wang, W. Facile synthesis of NiS2-MoS2 heterostructured nanoflowers for enhanced overall water splitting performance. J. Mater. Sci. 2020, 55, 13892-904.

26. Xu, X.; Zhong, W.; Zhang, X.; et al. Flexible symmetric supercapacitor with ultrahigh energy density based on NiS/MoS2@N-rGO hybrids electrode. J. Colloid. Interface. Sci. 2019, 543, 147-55.

27. Zhang, D.; Jin, Y.; Cao, Y. Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure. J. Mater. Sci. Mater. Electron. 2019, 30, 573-81.

28. Zhao, X.; Ran, W.; Wang, Z.; Sun, J.; Liu, R.; Liu, J. Dynamic monitoring of the structural evolution of Au@Pd under electrochemistry. J. Phys. Chem. C. 2023, 127, 5432-41.

29. Jiao, J.; Yang, W.; Pan, Y.; et al. Interface engineering of partially phosphidated Co@Co-P@NPCNTs for highly enhanced electrochemical overall water splitting. Small 2020, 16, e2002124.

30. Zhang, B.; Shan, J.; Wang, W.; Tsiakaras, P.; Li, Y. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small 2022, 18, e2106012.

31. Gao, Y.; Zhang, D.; Li, J.; et al. The core/shell structure P doped MoS2@Ni3S2 nanorods array for high current density hydrogen evolution in alkaline and acidic electrolyte. Chemistry 2022, 28, e202202410.

32. Kobayashi, Y.; Yokoyama, S.; Shoji, R. Molten salt synthesis of intermetallic compound TiNi nanopowder passivated by TiOx shell prepared from NiTiO3 for catalytic hydrogenation. Materials 2022, 15, 8536.

33. Wang, H.; Jiao, S.; Liu, S.; et al. Mesoporous bimetallic Au@Rh core-shell nanowires as efficient electrocatalysts for pH-universal hydrogen evolution. ACS. Appl. Mater. Interfaces. 2021, 13, 30479-85.

34. Wang, H.; Tian, L.; Zhao, X.; Ali, M.; Yin, K.; Xing, Z. In situ growth MoS2/NiS composites on Ni foam as electrode materials for supercapacitors. Mater. Today. Commun. 2023, 34, 105041.

35. Tang, C.; Zhang, H.; Xu, K.; et al. Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catal. Today. 2018, 316, 171-6.

36. Yin, M.; Zhang, W.; Qiao, F.; Sun, J.; Fan, Y.; Li, Z. Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. J. Solid. State. Chem. 2019, 270, 531-8.

37. Chen, Z.; Liu, X.; Xin, P.; et al. Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium. J. Alloys. Compd. 2021, 853, 157352.

38. Zhao, X.; Bao, J.; Zhou, Y.; et al. Heterostructural MoS2/NiS nanoflowers via precise interface modification for enhancing electrocatalytic hydrogen evolution. New. J. Chem. 2022, 46, 5505-14.

39. Patil, P. A.; Khalate, S. A.; Patil, U. M.; Kale, R. D.; Kulkarni, S. B. Cavity structured S-NiO with improved energy density for aqueous asymmetric hybrid supercapacitors by CDA mechanism. Mater. Adv. 2023, 4, 4607-19.

40. Guan, S.; Fu, X.; Lao, Z.; Jin, C.; Peng, Z. NiS-MoS2 hetero-nanosheet arrays on carbon cloth for high-performance flexible hybrid energy storage devices. ACS. Sustain. Chem. Eng. 2019, 7, 11672-81.

41. Tao, K.; Gong, Y.; Lin, J. Low-temperature synthesis of NiS/MoS2/C nanowires/nanoflakes as electrocatalyst for hydrogen evolution reaction in alkaline medium via calcining/sulfurizing metal-organic frameworks. Electrochim. Acta. 2018, 274, 74-83.

42. Liu, Y.; Li, Q.; Zhu, Y.; et al. One-step synthesis of MoS2/NiS heterostructures with a stable 1T phase for an efficient hydrogen evolution reaction. Dalton. Trans. 2023, 52, 8530-5.

43. Ali, S. S.; Sayyar, R.; Xu, L.; et al. In-situ synthesis of NiS2 nanoparticles/MoS2 nanosheets hierarchical sphere anchored on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction. J. Colloid. Interface. Sci. 2022, 624, 150-9.

44. Lunk, H.; Hartl, H. Discovery, properties and applications of molybdenum and its compounds. ChemTexts 2017, 3, 48.

45. Luo, W.; Zhang, G.; Cui, Y.; et al. One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4-MoS2 heterojunction electrodes for supercapacitors. J. Mater. Chem. A. 2017, 5, 11278-85.

46. Jian, G.; Zhang, C.; Yan, C.; Moon, K.; Wong, C. P. Scalable preparation of fully coated Ag@BaTiO3 core@shell particles via poly(vinylpyrrolidone) assistance for high-k applications. ACS. Appl. Nano. Mater. 2018, 1, 1396-405.

47. Loría-Bastarrachea, M. I.; Herrera-Kao, W.; Cauich-Rodríguez, J. V.; Cervantes-Uc, J. M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737-42.

48. Brzezińska, M.; Szubiakiewicz, E.; Jędrzejczyk, M. Thermal stability of poly(N-vinylpyrrolidone) immobilized on the surface of silica in the presence of noble metals in an atmosphere of hydrogen and oxygen. Mater. Today. Commun. 2021, 26, 101706.

49. Tang, Y.; Wang, Y.; Wang, X.; et al. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Adv. Energy. Mater. 2016, 6, 1600116.

50. Indhumathy, M.; Prakasam, A. Controllable synthesis of NiS/rGO hybrid composite: an excellent counter electrode for dye sensitized solar cell. J. Clust. Sci. 2020, 31, 91-8.

51. Abhiram, N.; Thangaraju, D.; Marnadu, R.; et al. Structural, vibrational, morphological, optical and electrical properties of NiS and fabrication of SnS/NiS nanocomposite for photodetector applications. Inorg. Chem. Commun. 2021, 133, 108882.

52. Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J. Mater. Chem. 2008, 18, 5625.

53. Wang, G.; Yang, J.; Park, J.; et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C. 2008, 112, 8192-5.

54. Zhai, Z.; Li, C.; Zhang, L.; et al. Dimensional construction and morphological tuning of heterogeneous MoS2/NiS electrocatalysts for efficient overall water splitting. J. Mater. Chem. A. 2018, 6, 9833-8.

55. Ali, S. S.; Xu, L.; Sayyar, R.; et al. Growth of MoS2 nanosheets on M@N-doped carbon particles (M = Co, Fe or CoFe alloy) as an efficient electrocatalyst toward hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 132126.

56. Yang, Y.; Zhang, K.; Lin, H.; et al. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS. Catal. 2017, 7, 2357-66.

57. Gong, Y.; Yang, Z.; Lin, Y.; et al. Correction: Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting. Dalton. Trans. 2019, 48, 7025.

58. Wei, H.; Tan, A.; Liu, W.; et al. Interface engineering-induced 1T-MoS2/NiS heterostructure for efficient hydrogen evolution reaction. Catalysts 2022, 12, 947.

59. Voiry, D.; Yamaguchi, H.; Li, J.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850-5.

60. Huang, H.; Zhao, Y.; Bai, Y.; Li, F.; Zhang, Y.; Chen, Y. Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Sci. 2020, 7, 2000012.

61. Huang, L.; Li, Z.; Sun, S.; et al. NiS/MoS2 complex grown on carbon paper as a bifunctional electrocatalyst for full water splitting. J. Alloys. Compd. 2022, 926, 166870.

62. Gu, C.; Zhou, G.; Yang, J.; et al. NiS/MoS2 mott-schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chem. Eng. J. 2022, 443, 136321.

63. Bao, F.; Kemppainen, E.; Dorbandt, I.; et al. Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions. ChemElectroChem 2021, 8, 195-208.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/