REFERENCES

1. Jiao, S.; Zheng, J.; Li, Q.; et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2018, 2, 110-24.

2. Li, G.; Liu, Z.; Huang, Q.; et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy. 2018, 3, 1076-83.

3. Zhao, L.; Ding, B.; Qin, X. Y.; et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, e2106704.

4. Kim, J. M.; Engelhard, M. H.; Lu, B.; et al. High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode. Adv. Funct. Mater. 2022, 32, 2207172.

5. Wang, T.; Li, Y.; Zhang, J.; et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 2020, 11, 5429.

6. Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.

7. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403-73.

8. Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy. Mater. 2021, 11, 2100046.

9. von Aspern N, Röschenthaler GV, Winter M, Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem. Int. Ed. 2019, 58, 15978-6000.

10. Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy. Environ. Sci. 2019, 12, 780-94.

11. Weber, R.; Genovese, M.; Louli, A. J.; et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy. 2019, 4, 683-9.

12. Umh, H. N.; Park, J.; Yeo, J.; Jung, S.; Nam, I.; Yi, J. Lithium metal anode on a copper dendritic superstructure. Electrochem. Commun. 2019, 99, 27-31.

13. Yan, K.; Lu, Z.; Lee, H. W.; et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy. 2016, 1, 16010.

14. Jiang, G.; Li, F.; Wang, H.; et al. Perspective on high-concentration electrolytes for lithium metal batteries. Small. Struct. 2021, 2, 2000122.

15. Chae, S. U.; Yi, S.; Yoon, J.; et al. Highly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries. Energy. Storage. Mater. 2022, 52, 76-84.

16. Lee, J. H.; Cho, Y. G.; Gu, D.; Kim, S. J. 2D PdTe2 thin-film-coated current collectors for long-cycling anode-free rechargeable batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 15080-9.

17. Xu, M.; Zhu, Q.; Li, Y.; Gao, Y.; Sun, N.; Xu, B. Atom-dominated relay catalysis of high-entropy MXene promotes cascade polysulfide conversion for lithium-sulfur batteries. Energy. Environ. Sci. 2024, 17, 7735-48.

18. Zhang, D.; Wang, S.; Li, B.; Gong, Y.; Yang, S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, e1901820.

19. Ha, S.; Kim, D.; Lim, H. K.; Koo, C. M.; Kim, S. J.; Yun, Y. S. Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater. 2021, 31, 2101261.

20. Yao, W.; He, S.; Xu, J.; et al. Polypyrrole nanotube sponge host for stable lithium-metal batteries under lean electrolyte conditions. ACS. Sustain. Chem. Eng. 2021, 9, 2543-51.

21. Liu, C.; Yuan, Z.; Chen, K.; et al. MXene-BN-introduced artificial SEI to inhibit dendrite growth of lithium metal batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 56356-64.

22. Narayanasamy, M.; Zaman, S.; Koo, C. M. 2D MXenes for all-solid-state batteries: a comprehensive review. Mater. Today. Energy. 2023, 37, 101405.

23. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

24. Anasori, B.; Xie, Y.; Beidaghi, M.; et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS. Nano. 2015, 9, 9507-16.

25. Halim, J.; Kota, S.; Lukatskaya, M. R.; et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118-27.

26. Iqbal, A.; Kwon, J.; Hassan, T.; et al. Environmentally stable and highly crystalline MXenes for multispectral electromagnetic shielding up to millimeter waves. Adv. Funct. Mater. 2024, 2409346.

27. Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446-50.

28. Shahzad, F.; Alhabeb, M.; Hatter, C. B.; et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-40.

29. Halim, J.; Cook, K. M.; Eklund, P.; Rosen, J.; Barsoum, M. W. XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes). Appl. Surf. Sci. 2019, 494, 1138-47.

30. Kwon, H. M.; Kim, N. H.; Hong, S. J.; et al. Uniform Li-metal growth on renewable lignin with lithiophilic functional groups derived from wood for high-performance Li-metal batteries. Surf. Interfaces. 2024, 44, 103643.

31. Cui, S.; Zhai, P.; Yang, W.; et al. Large-scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery. Small 2020, 16, e1905620.

32. Yin, D.; Huang, G.; Wang, S.; et al. Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: in situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes. J. Mater. Chem. A. 2020, 8, 1425-31.

33. Lin, H.; Zhang, Z.; Wang, Y.; Zhang, X. L.; Tie, Z.; Jin, Z. Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102735.

34. Huang, S.; Zhang, W.; Ming, H.; Cao, G.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano. Lett. 2019, 19, 1832-7.

35. Li, N.; Ye, Q.; Zhang, K.; et al. Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 2019, 131, 18414-9.

36. Yang, D.; Zhao, C.; Lian, R.; et al. Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 2021, 31, 2010987.

37. Wang, G.; Chen, C.; Chen, Y.; et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 2020, 59, 2055-60.

38. Fei, G.; Du, Y.; Liu, X.; et al. Suppressing Li dendrite by a guar gum natural polymer film for high-performance lithium metal anodes. J. Appl. Polym. Sci. 2024, 141, e55127.

39. Ma, M.; Guo, X.; Wen, P.; et al. Reactive solid polymer layer: from a single fluoropolymer to divergent fluorinated interface. Angew. Chem. Int. Ed. 2024, 136, e202407304.

40. Chu, F.; Zhou, J.; Liu, J.; Tang, F.; Song, L.; Wu, F. Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li-Ge alloy for stable lithium metal anodes. Nano. Res. 2024, 17, 5148-58.

41. Zhang, L.; Wu, S.; Gao, J.; et al. Multi-component lithiophilic alloy film modified Cu current collector for long-life lithium metal batteries by a novel FCVA Co-deposition system. Small 2024, 20, e2402752.

42. Ding, F.; Xu, W.; Chen, X.; et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 2013, 160, A1894.

43. Hu, X.; Li, Y.; Liu, J.; Wang, Z.; Bai, Y.; Ma, J. Constructing LiF/Li2CO3-rich heterostructured electrode electrolyte interphases by electrolyte additive for 4.5 V well-cycled lithium metal batteries. Sci. Bull. 2023, 68, 1295-305.

44. Peng, J. Y.; Huang, J.; Li, W. J.; et al. A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte. Chinese. Phys. B. 2018, 27, 078201.

45. Beheshti, S. H.; Javanbakht, M.; Omidvar, H.; et al. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives. iScience 2022, 25, 103862.

46. Zhang, B.; Ju, Z.; Xie, Q.; et al. Ti3CNTx MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries. Energy. Storage. Mater. 2023, 58, 322-31.

47. Li, Z.; Wang, L.; Huang, X.; He, X. Unveiling the mystery of LiF within solid electrolyte interphase in lithium batteries. Small 2024, 20, e2305429.

48. Zheng, J.; Ju, Z.; Zhang, B.; et al. Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase. J. Mater. Chem. A. 2021, 9, 10251-9.

49. Fan, L.; Zhuang, H. L.; Gao, L.; Lu, Y.; Archer, L. A. Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A. 2017, 5, 3483-92.

50. Ozhabes, Y.; Gunceler, D.; Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. arXiv 2015, 150405799.

51. Han, B.; Zhang, Z.; Zou, Y.; et al. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy. Adv. Mater. 2021, 33, e2100404.

52. Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Electrochemical oxidation of lithium carbonate generates singlet oxygen. Angew. Chem. Int. Ed. 2018, 57, 5529-33.

53. Hussain, I.; Amara, U.; Bibi, F.; et al. Mo-based MXenes: synthesis, properties, and applications. Adv. Colloid. Interface. Sci. 2024, 324, 103077.

54. Yang, Y.; Peng, J.; Shi, Z.; Zhang, P.; Arramel, A.; Li, N. Unveiling the key intermediates in electrocatalytic synthesis of urea with CO2 and N2 coupling reactions on double transition-metal MXenes. J. Mater. Chem. A. 2023, 11, 6428-39.

55. Liu, H.; Wang, H.; Jing, Z.; Wu, K.; Cheng, Y.; Xiao, B. Bare Mo-based ordered double-transition metal MXenes as high-performance anode materials for aluminum-ion batteries. J. Phys. Chem. C. 2020, 124, 25769-74.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/