REFERENCES
1. Hsu, W. L.; Tsai, C. W.; Yeh, A. C.; Yeh, J. W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 2024, 8, 471-85.
2. Yao, Y.; Dong, Q.; Brozena, A.; et al. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery. Science 2022, 376, eabn3103.
3. Ma, Y.; Ma, Y.; Wang, Q.; et al. High-entropy energy materials: challenges and new opportunities. Energy. Environ. Sci. 2021, 14, 2883-905.
4. Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004, 375-7, 213-8.
5. Yeh, J. W.; Chen, S. K.; Lin, S. J.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303.
6. Zhang, Y.; Wang, D.; Wang, S. High-entropy alloys for electrocatalysis: design, characterization, and applications. Small 2022, 18, e2104339.
7. Jiang, B.; Yu, Y.; Cui, J.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830-4.
8. Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem. Soc. Rev. 2023, 52, 8319-73.
9. Guo, R.; Yang, Y.; Zhao, C.; et al. The role of high-entropy materials in lithium-based rechargeable batteries. Adv. Funct. Mater. 2024, 34, 2313168.
10. Liu, Z. Y.; Liu, Y.; Xu, Y.; et al. Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications. Green. Energy. Environ. 2023, 8, 1341-57.
11. Cui, M.; Yang, C.; Li, B.; et al. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy. Mater. 2021, 11, 2002887.
12. He, R.; Yang, L.; Zhang, Y.; et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy. Storage. Mater. 2023, 58, 287-98.
13. Li, K.; He, J.; Guan, X.; et al. Phosphorus-modified amorphous high-entropy CoFeNiCrMn compound as high-performance electrocatalyst for hydrazine-assisted water electrolysis. Small 2023, 19, e2302130.
14. Zhang, Y.; Kang, J.; Xie, H.; et al. Boosting the oxygen evolution of high-entropy (oxy)hydroxide epitaxially grown on high entropy alloy by lattice oxygen activation. Appl. Catal. B. Environ. 2024, 341, 123331.
15. Hooch, A. W.; Lee, S.; Lee, H. S.; et al. High-valence metal-driven electronic modulation for boosting oxygen evolution reaction in high-entropy spinel oxide. Adv. Funct. Mater. 2024, 34, 2309438.
16. Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.
17. Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional electrocatalysts for overall and hybrid water splitting. Chem. Rev. 2024, 124, 3694-812.
18. Luo, Q.; Lu, C.; Liu, L.; Zhu, M. A review on the synthesis of transition metal nitride nanostructures and their energy related applications. Green. Energy. Environ. 2023, 8, 406-37.
19. Saidi, W. A. Emergence of local scaling relations in adsorption energies on high-entropy alloys. NPJ. Comput. Mater. 2022, 8, 86.
20. Zhang, W.; Wei, X.; Wu, T.; et al. Carbothermal shock enabled functional nanomaterials for energy-related applications. Nano. Energy. 2023, 118, 108994.
21. Ritter, T. G.; Pappu, S.; Shahbazian-Yassar, R. Scalable synthesis methods for high-entropy nanoparticles. Adv. Energy. Sustain. Res. 2024, 5, 2300297.
22. Yao, Y.; Huang, Z.; Xie, P.; et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489-94.
23. Yu, D.; Xue, Z.; Mu, T. Correction: eutectics: formation, properties, and applications. Chem. Soc. Rev. 2021, 50, 9345.
24. Deng, R.; Gao, M.; Zhang, B.; Zhang, Q. Solvent-mediated synthesis of functional powder materials from deep eutectic solvents for energy storage and conversion: a review. Adv. Energy. Mater. 2024, 14, 2303707.
25. Yu, D.; Jiang, D.; Xue, Z.; Mu, T. Deep eutectic solvents as green solvents for materials preparation. Green. Chem. 2024, 26, 7478-507.
26. Yang, H.; Cheng, Z.; Wu, P.; Wei, Y.; Jiang, J.; Xu, Q. Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications. Electrochim. Acta. 2022, 427, 140879.
27. Jiang, J.; Yan, P.; Zhou, Y.; et al. Interplanar growth of 2D non-van der waals Co2N-based heterostructures for efficient overall water splitting. Adv. Energy. Mater. 2020, 10, 2002214.
28. Barnes, A. J.; Le Gall, L.; Lauransan, J. Vibrational spectra of barbituric acid derivatives in low-temperature matrices: Part 2. Barbituric acid and 1,3-dimethyl barbituric acid. J. Mol. Struct. 1979, 56, 15-27.
29. Alparone, A. Anharmonic IR and Raman spectra and electronic and vibrational (hyper)polarizabilities of barbituric, 2-thiobarbituric and 2-selenobarbituric acids. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2014, 117, 669-78.
30. Xu, Y.; Cheng, Z.; Jiang, J.; Du, J.; Xu, Q. 2D amorphous bi-metallic NiFe nitrides for a high-efficiency oxygen evolution reaction. Chem. Commun. 2021, 57, 13170-3.
31. Wei, Y.; Xu, Y.; Zhang, H.; Jiang, J.; Xu, Q. Anion-regulated 2D amorphous binary nickel-iron nitrides for efficient water oxidation at high-current-densities. New. J. Chem. 2024, 48, 11206-10.
32. Wu, Y.; Cai, J.; Xie, Y.; et al. Regulating the interfacial electronic coupling of Fe2N via orbital steering for hydrogen evolution catalysis. Adv. Mater. 2020, 32, e1904346.
33. Li, S.; Wang, S.; He, J.; et al. Chromium-doped nickel oxide and nickel nitride mediate selective electrocatalytic oxidation of sterol intermediates coupled with H2 evolution. Angew. Chem. Int. Ed. 2023, 62, e202306553.
34. Tiwari, A. P.; Bae, G.; Yoon, Y.; et al. Chemical strain engineering of copper atoms on continuous three-dimensional-nanopatterned nickel nitride to accelerate alkaline hydrogen evolution. ACS. Sustain. Chem. Eng. 2023, 11, 5229-37.
35. Mann, D. S.; Kwon, S. N.; Thakur, S.; Patil, P.; Jeong, K. U.; Na, S. I. Suppressing redox reactions at the perovskite-nickel oxide interface with zinc nitride to improve the performance of perovskite solar cells. Small 2024, 20, e2311362.
36. Chen, J.; Wang, D.; Yang, X.; et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem. Int. Ed. 2023, 62, e202215406.
37. Li, J.; Meng, X.; Song, X.; et al. Valence engineering via manganese-doping on cobalt nitride nanoarrays for efficient electrochemically paired glycerol valorization and H2 production. Adv. Funct. Mater. 2024, 34, 2316718.
38. Yan, Q.; Feng, J.; Shi, W.; et al. Chromium-induced high covalent Co-O bonds for efficient anodic catalysts in PEM electrolyzer. Adv. Sci. 2024, 11, e2402356.
39. Yao, Y.; Liu, Z.; Xie, P.; et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.
40. Li, Y.; Zhang, B.; Wang, W.; et al. Selective-etching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. Chem. Eng. J. 2021, 405, 126981.
41. Xiong, D.; He, X.; Liu, X.; et al. 1D/3D heterogeneous assembling body of cobalt nitrides for highly efficient overall hydrazine splitting and supercapacitors. Small 2024, 20, e2306100.
42. Li, Y.; Mao, Z.; Wang, Q.; et al. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chem. Eng. J. 2020, 390, 124556.
43. Tian, Y.; Li, S.; Huang, R.; et al. Rational construction of core-branch Co3O4@CoNi-layered double hydroxide nanoarrays as efficient electrocatalysts for oxygen evolution reaction. J. Alloys. Compd. 2022, 899, 163259.