REFERENCES
1. Sánchez-Díez, E.; Ventosa, E.; Guarnieri, M.; et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power. Sources. 2021, 481, 228804.
2. European Chemicals Agency. Annex XV-restriction report proposal for per- and polyfluoroalkyl substances (PFASs). Helsinki, Finland: European Chemicals Agency; 2023. Available from: https://echa.europa.eu/restrictions-under-consideration/-/substance-rev/72301/term [Last accessed on 19 Feb 2025]
3. Minke, C.; Turek, T. Economics of vanadium redox flow battery membranes. J. Power. Sources. 2015, 286, 247-57.
4. Janoschka, T.; Martin, N.; Martin, U.; et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78-81.
5. Thiam, B. G.; El, M. A.; Vaudreuil, S. An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications. High. Perform. Polym. 2022, 34, 131-48.
6. Mahimai B, Sivasubramanian G, Sekar K, Kannaiyan D, Deivanayagam P. Sulfonated poly(ether ether ketone): efficient ion-exchange polymer electrolytes for fuel cell applications-a versatile review. Mater. Adv. 2022, 3, 6085-95.
7. Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. Membrane development for vanadium redox flow batteries. ChemSusChem 2011, 4, 1388-406.
8. Zhang, L.; Zhang, S.; Li, E.; Zhao, L.; Zhang, S. Sulfonated poly(ether ether ketone) membrane for quinone-based organic flow batteries. J. Membr. Sci. 2019, 584, 246-53.
10. Yang, B.; Manthiram, A. Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells. J. Power. Sources. 2006, 153, 29-35.
11. Mendil-Jakani, H.; Zamanillo, L. I.; Mareau, V. H.; Gonon, L. Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments. Phys. Chem. Chem. Phys. 2017, 19, 16013-22.
12. Qian, P.; Zhou, W.; Zhang, Y.; Chao, D.; Song, M. Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries. Energy. Fuels. 2023, 37, 17681-707.
13. Brush, D.; Danilczuk, M.; Schlick, S. Phase separation in sulfonated poly(ether ether ketone) (SPEEK) ionomers by spin probe ESR: effect of the degree of sulfonation and water content. Macromolecules 2015, 48, 637-44.
14. Yuan, Z.; Li, X.; Hu, J.; Xu, W.; Cao, J.; Zhang, H. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys. Chem. Chem. Phys. 2014, 16, 19841-7.
15. Xiong, P.; Zhang, L.; Chen, Y.; Peng, S.; Yu, G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew. Chem. Int. Ed. 2021, 60, 24770-98.
16. Ye, C.; Tan, R.; Wang, A.; et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes. Angew. Chem. Int. Ed. 2022, 61, e202207580.
17. Tan, R.; Wang, A.; Ye, C.; et al. Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries. Adv. Sci. 2023, 10, e2206888.
18. Chen, D.; Li, D.; Li, X. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application. J. Power. Sources. 2017, 353, 11-8.
19. Che, X.; Zhao, H.; Ren, X.; et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J. Membr. Sci. 2020, 611, 118359.
20. Wang, F.; Zhang, Z.; Jiang, F. Dual-porous structured membrane for ion-selection in vanadium flow battery. J. Power. Sources. 2021, 506, 230234.
21. Zhang, J.; Lejarazu-larrañaga, A.; Yang, F.; et al. Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries. Energy. Mater. 2024, 4, 400042.
22. Zhai, S.; Jia, X.; Lu, Z.; et al. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers. J. Membr. Sci. 2022, 662, 121003.
23. Xia, Y.; Wang, Y.; Cao, H.; et al. Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J. Membr. Sci. 2022, 653, 120517.
24. Jiang, F.; Zhang, Y.; Wang, F.; Zhou, X.; Liao, W. Finely controlled swelling: a shortcut to construct ion-selective channels in polymer membranes. Polymer 2021, 225, 123793.
25. Jiang, F.; Xue, R. Ion-selective membranes fabricated using finely controlled swelling of non-ionic fluoropolymer for redox flow batteries. Batteries 2023, 9, 545.
26. Luo, J.; Hu, B.; Debruler, C.; et al. Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries. Joule 2019, 3, 149-63.
27. Jiang, M.; Candeloro, D.; Mahesh, J. M. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes. WO2002076593A1. Available from: https://patents.google.com/patent/WO2002076593A1/en [Last accessed on 19 Feb 2025]
28. Gierke, T. D.; Munn, G. E.; Wilson, F. C. The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687-704.
29. Xue, R.; Jiang, F.; Wang, F.; Zhou, X. Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method. J. Power. Sources. 2020, 449, 227475.
30. Hu, B.; Hu, M.; Luo, J.; Liu, T. L. A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries. Adv. Energy. Mater. 2022, 12, 2102577.
31. Kingsbury, R. S.; Zhu, S.; Flotron, S.; Coronell, O. Microstructure determines water and salt permeation in commercial ion-exchange membranes. ACS. Appl. Mater. Interfaces. 2018, 10, 39745-56.
32. Krowne, C. M. Physics, electrochemistry, chemistry, and electronics of the vanadium redox flow battery by analyzing all the governing equations. Phys. Chem. Chem. Phys. 2024, 26, 2823-62.
33. Ye, C.; Wang, A.; Breakwell, C.; et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat. Commun. 2022, 13, 3184.
34. Zhou, X.; Xue, R.; Zhong, Y.; Zhang, Y.; Jiang, F. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. J. Membr. Sci. 2020, 595, 117614.
35. Garcia-Vasquez, W.; Dammak, L.; Larchet, C.; Nikonenko, V.; Pismenskaya, N.; Grande, D. Evolution of anion-exchange membrane properties in a full scale electrodialysis stack. J. Membr. Sci. 2013, 446, 255-65.
36. Folkertsma, L.; Zhang, K.; Czakkel, O.; et al. Synchrotron SAXS and impedance spectroscopy unveil nanostructure variations in redox-responsive porous membranes from poly(ferrocenylsilane) poly(ionic liquid)s. Macromolecules 2017, 50, 296-302.
37. He, G.; Li, Z.; Zhao, J.; et al. Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives. Adv. Mater. 2015, 27, 5280-95.
38. Choi, S.; Jin, K. S. Ex situ aging effect on sulfonated poly(ether ether ketone) membrane: hydration-dehydration cycling and hydrothermal treatment. J. Energy. Chem. 2022, 70, 583-92.
39. Oh, K.; Bae, I. Engineered membrane-electrode interface for hydrocarbon-based polymer-electrolyte-membrane fuel cells via solvent-vapor-annealed deposition. ACS. Appl. Nano. Mater. 2019, 2, 3857-63.
40. Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 2001, 185, 29.
41. Mensharapov, R. M.; Ivanova, N. A.; Spasov, D. D.; Grigoriev, S. A.; Fateev, V. N. SAXS investigation of the effect of freeze/thaw cycles on the nanostructure of nafion® membranes. Polymers 2022, 14, 4395.
42. Mendil-Jakani, H.; Zamanillo, L. I.; Legrand, P. M.; Mareau, V. H.; Gonon, L. A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells. Phys. Chem. Chem. Phys. 2014, 16, 11228-35.
43. Caianiello, C.; Arenas, L. F.; Turek, T.; Wilhelm, R. Characterization of an aqueous flow battery utilizing a hydroxylated tetracationic viologen and a simple cationic ferrocene derivative. Adv. Energy. Sustain. Res. 2023, 4, 2300077.
44. Potash, R. A.; Mckone, J. R.; Conte, S.; Abruña, H. D. On the benefits of a symmetric redox flow battery. J. Electrochem. Soc. 2016, 163, A338-44.
45. Song, Y.; Li, X.; Yan, C.; Tang, A. Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation. J. Power. Sources. 2020, 480, 229141.
46. Rubio-Presa, R.; Lubián, L.; Borlaf, M.; Ventosa, E.; Sanz, R. Addressing practical use of viologen-derivatives in redox flow batteries through molecular engineering. ACS. Mater. Lett. 2023, 5, 798-802.
47. Jin, S.; Fell, E. M.; Vina-Lopez, L.; et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species. Adv. Energy. Mater. 2020, 10, 2000100.
48. Gubler, L. Membranes and separators for redox flow batteries. Curr. Opin. Electrochem. 2019, 18, 31-6.
49. Austing JG, Nunes Kirchner C, Komsiyska L, Wittstock G. Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J. Membr. Sci. 2016, 510, 259-69.