REFERENCES

1. Peng, Q.; Rehman, J.; Eid, K.; et al. Vanadium carbide (V4C3) MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 2022, 12, 2825.

2. Zhang, L.; Li, X.; Yang, M.; Chen, W. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy. Storage. Mater. 2021, 41, 522-45.

3. Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652.

4. Fan, E.; Li, L.; Wang, Z.; et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020-63.

5. Yu, X.; Chen, X.; Wang, X.; Yuan, Z.; Feng, J.; Rong, J. Metallic B2C monolayer as a promising anode material for Li/Na ion storage. Chem. Eng. J. 2021, 406, 126812.

6. Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569-614.

7. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta. 1999, 45, 67-86.

8. Abraham, K. M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS. Energy. Lett. 2020, 5, 3544-7.

9. Yoshio, M.; Wang, H.; Fukuda, K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew. Chem. Int. Ed. 2003, 42, 4203-6.

10. Rehman, J.; Fan, X.; Butt, M.; Laref, A.; An, D. V.; Zheng, W. First principles predictions of Na and K storage in layered SnSe2. Appl. Surf. Sci. 2021, 566, 150522.

11. Ghani, A.; Ahmed, S.; Murtaza, A.; et al. Bi-C monolayer as a promising 2D anode material for Li, Na, and K-ion batteries†. Phys. Chem. Chem. Phys. 2023, 25, 4980-6.

12. Ren, X.; Zhao, Q.; Mcculloch, W. D.; Wu, Y. MoS2 as a long-life host material for potassium ion intercalation. Nano. Res. 2017, 10, 1313-21.

13. Jiang, H.; Zhao, T.; Ren, Y.; Zhang, R.; Wu, M. Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci. Bull. 2017, 62, 572-8.

14. Rehman, J.; Lin, S.; Butt, M. K.; et al. An overview of 2D metal sulfides and carbides as Na host materials for Na-ion batteries. Chem. Eng. J. 2023, 461, 141924.

15. Yang, C.; Sun, X.; Zhang, X.; et al. Is graphite nanomesh a promising anode for the Na/K-Ions batteries? Carbon 2021, 176, 242-52.

16. Wen, Y.; He, K.; Zhu, Y.; et al. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

17. Kim, H. J.; Jo, J. H.; Choi, J. U.; et al. Long life anode material for potassium ion batteries with high-rate potassium storage. Energy. Storage. Mater. 2021, 40, 197-208.

18. Cai, T.; Wahyudi, W.; Kumar, P.; et al. Overlooked challenges of interfacial chemistry upon developing high energy density silicon anodes for lithium-ion batteries. Mater. Sci. Eng. R. Rep. 2024, 161, 100854.

19. Peng, Q.; Rehman, J.; Ullah, M.; et al. Anchoring of K and Na on the surface of a novel SiC monolayer: first-principles predictions. J. Energy. Storage. 2024, 104, 114435.

20. Qu, B.; Ma, C.; Ji, G.; et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-9.

21. Lin, J.; Peng, Z.; Xiang, C.; et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS. Nano. 2013, 7, 6001-6.

22. Rehman, J.; Fan, X.; Zheng, W. 2D SnC sheet with a small strain is a promising Li host material for Li-ion batteries. Mater. Today. Commun. 2021, 26, 101768.

23. Rehman, J.; Fan, X.; Laref, A.; Zheng, W. T. Adsorption and diffusion of potassium on 2D SnC sheets for potential high-performance anodic applications of potassium-ion batteries. ChemElectroChem 2020, 7, 3832-8.

24. Butt M, Muhammad Zeeshan H, An Dinh V, Zhao Y, Wang S, Jin K. Monolayer SnC as anode material for Na ion batteries. Comput. Mater. Sci. 2021, 197, 110617.

25. Mei, J.; Liao, T.; Sun, Z. 2D/2D heterostructures: rational design for advanced batteries and electrocatalysis. Energy. Environ. Mater. 2022, 5, 115-32.

26. Wang, S.; Zhao, S.; Guo, X.; Wang, G. 2D material‐based heterostructures for rechargeable batteries. Adv. Energy. Mater. 2022, 12, 2100864.

27. Wang, J.; Wang, B.; Lu, B. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv. Energy. Mater. 2020, 10, 2000884.

28. Khan, A.; Azadmanjiri, J.; Wu, B.; Liping, L.; Sofer, Z.; Min, J. Atomically thin nanosheets confined in 2D heterostructures: metal-ion batteries prospective. Adv. Energy. Mater. 2021, 11, 2100451.

29. Zheng, X.; Liu, J.; Chen, L.; Gao, J.; Tao, Y. Metal sulfides/graphene nanocomposites: an overview of preparation and applications. Recent. Pat. Chem. Eng. 2013, 6, 152-60.

30. Wang, Q.; Rui, K.; Zhang, C.; et al. Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS. Appl. Mater. Interfaces. 2017, 9, 40317-23.

31. Vahidmohammadi, A.; Liang, W.; Mojtabavi, M.; Wanunu, M.; Beidaghi, M. 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage. Energy. Storage. Mater. 2021, 41, 554-62.

32. Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy. 2017, 2, 1-6.

33. Liu, H.; Chen, X.; Deng, L.; Su, X.; Guo, K.; Zhu, Z. Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta. 2016, 206, 184-91.

34. Mikhaleva, N. S.; Visotin, M. A.; Kuzubov, A. A.; Popov, Z. I. VS2/Graphene heterostructures as promising anode material for Li-ion batteries. J. Phys. Chem. C. 2017, 121, 24179-84.

35. He, X.; Tang, A.; Li, Y.; Zhang, Y.; Chen, W.; Huang, S. Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries. Appl. Surf. Sci. 2021, 563, 150269.

36. Dinda, P. P.; Meena, S. A V3C2MXene/graphene heterostructure as a sustainable electrode material for metal ion batteries. J. Phys. Condens. Matter. 2021, 33, 175001.

37. Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044-78.

38. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-99.

39. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899-908.

40. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.

41. Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC. Adv. 2017, 7, 16801-22.

42. Usman, M.; Rehman, J. U.; Tahir, M. B.; Hussain, A. First-principles calculations to investigate the effect of Cs-doping in BaTiO3 for water-splitting application. Solid. State. Commun. 2022, 355, 114920.

43. Dappe, Y. J.; Oszwaldowski, R.; Pou, P.; Ortega, J.; Pérez, R.; Flores, F. Local-orbital occupancy formulation of density functional theory: application to Si, C, and graphene. Phys. Rev. B. 2006, 73, 235124.

44. Huang, H.; Wu, H.; Chi, C.; Huang, B.; Zhang, T. Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries†. J. Mater. Chem. A. 2019, 7, 8897-904.

45. Rehman, J.; Gao, J.; Yu, T.; El-marghany, A.; Yang, G. A novel 2D VC4 as a promising Na-host material for Na-ion batteries: computational insights†. J. Mater. Chem. A. 2024, 12, 6703-11.

46. Yan, X.; Wang, S.; Ding, S.; Rehman, J.; Liu, Y.; Yang, G. A C8P monolayer with cross-sp-hybridized phosphorus atoms and ultrahigh energy density as a K-ion battery anode. J. Mater. Chem. A. 2024, 12, 30842-9.

47. Yu, T.; Zhao, Z.; Liu, L.; Zhang, S.; Xu, H.; Yang, G. TiC3 monolayer with high specific capacity for sodium-ion batteries. J. Am. Chem. Soc. 2018, 140, 5962-8.

48. Tang, C.; Zhang, M.; Zhang, K.; Gong, J. Promising anode material BN/VS2 heterostructure for the Li-ion battery: the first-principles study. Appl. Surf. Sci. 2021, 564, 150468.

49. Liu, B.; Gao, T.; Liao, P.; et al. Metallic VS2/graphene heterostructure as an ultra-high rate and high-specific capacity anode material for Li/Na-ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 18784-93.

50. Ye, X. J.; Zhao, R.; Xiong, X.; Wang, X. H.; Liu, C. S. A first-principles study of the BC3N2 monolayer and a BC3N2/graphene heterostructure as promising anode materials for sodium-ion batteries†. Phys. Chem. Chem. Phys. 2024, 26, 11738-45.

51. Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 2006, 44, 203-10.

52. Yang, Z.; Choi, D.; Kerisit, S.; et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power. Sources. 2009, 192, 588-98.

53. Vetter, J.; Novák, P.; Wagner, M.; et al. Ageing mechanisms in lithium-ion batteries. J. Power. Sources. 2005, 147, 269-81.

54. Li, Y.; Wu, W.; Ma, F. Blue phosphorene/graphene heterostructure as a promising anode for lithium-ion batteries: a first-principles study with vibrational analysis techniques. J. Mater. Chem. A. 2019, 7, 611-20.

55. Bijoy, T. K.; Sudhakaran, S.; Lee, S. C. WS2-graphene van der Waals heterostructure as promising anode material for lithium-ion batteries: a first-principles approach. ACS. Omega. 2024, 9, 6482-91.

56. Ma, J.; Fu, J.; Niu, M.; Quhe, R. MoO2 and graphene heterostructure as promising flexible anodes for lithium-ion batteries. Carbon 2019, 147, 357-63.

57. Samad, A.; Noor-a-alam, M.; Shin, Y. First principles study of a SnS2/graphene heterostructure: a promising anode material for rechargeable Na ion batteries. J. Mater. Chem. A. 2016, 4, 14316-23.

58. Kuai, Y.; Chen, C.; Abduryim, E.; et al. A two-dimensional metallic SnB monolayer as an anode material for non-lithium-ion batteries. Phys. Chem. Chem. Phys. 2022, 24, 23737-48.

59. Shi, L.; Zhao, T. S.; Xu, A.; Xu, J. B. Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries. J. Mater. Chem. A. 2016, 4, 16377-82.

60. Wasalathilake, K. C.; Hu, N.; Fu, S.; Zheng, J.; Du, A.; Yan, C. High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium-ion batteries: a first-principles investigation. Appl. Surf. Sci. 2021, 536, 147779.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/