REFERENCES

1. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv. Energy. Mater. 2020, 10, 2001310.

2. Fan, E.; Li, L.; Wang, Z.; et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020-63.

3. Zhou, Q.; Zheng, Y.; Wang, D.; et al. Cathode materials in non-aqueous aluminum-ion batteries: progress and challenges. Ceram. Int. 2020, 46, 26454-65.

4. Ponnada, S.; Kiai, M. S.; Krishnapriya, R.; Singhal, R.; Sharma, R. K. Lithium-free batteries: needs and challenges. Energy. Fuels. 2022, 36, 6013-26.

5. Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High performance and long-cycle life rechargeable aluminum ion battery: recent progress, perspectives and challenges. Chem. Record. 2022, 22, e202200181.

6. Ma, D.; Li, J.; Li, H.; et al. Progress of advanced cathode materials of rechargeable aluminum-ion batteries. Energy. Mater. Adv. 2024, 5, 0088.

7. Raić, M.; Lužanin, O.; Jerman, I.; Dominko, R.; Bitenc, J. Amide-based Al electrolytes and their application in Al metal anode-organic batteries. J. Power. Sources. 2024, 624, 235575.

8. Wu, Y.; Lin, W.; Tsai, T.; Lin, M. Unveiling the reaction mechanism of aluminum and its alloy anode in aqueous aluminum cells. ACS. Appl. Energy. Mater. 2024, 7, 3957-67.

9. Wang, H.; Gu, S.; Bai, Y.; et al. Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A. 2015, 3, 22677-86.

10. Macfarlane, D. R.; Forsyth, M.; Howlett, P. C.; et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 2016, 1, 15005.

11. Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558-625.

12. Hu, Y.; Fan, L.; Rao, A. M.; et al. Cyclic-anion salt for high-voltage stable potassium-metal batteries. Natl. Sci. Rev. 2022, 9, nwac134.

13. Ng, K. L.; Lu, Z.; Wang, Y.; Singh, C. V.; Azimi, G. Fundamental insights into electrical and transport properties of chloroaluminate ionic liquids for aluminum-ion batteries. J. Phys. Chem. C. 2021, 125, 15145-54.

14. Pastel, G. R.; Chen, Y.; Pollard, T. P.; et al. A sobering examination of the feasibility of aqueous aluminum batteries. Energy. Environ. Sci. 2022, 15, 2460-9.

15. Jayaprakash, N.; Das, S. K.; Archer, L. A. The rechargeable aluminum-ion battery. Chem. Commun. 2011, 47, 12610.

16. Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H. Emerging nonaqueous aluminum-ion batteries: challenges, status, and perspectives. Adv. Mater. 2018, 30, e1706310.

17. Ates, M.; Chebil, A.; Yoruk, O.; Dridi, C.; Turkyilmaz, M. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review. Ionics 2022, 28, 27-52.

18. Wang, S.; Kravchyk, K. V.; Pigeot-rémy, S.; et al. Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS. Appl. Nano. Mater. 2019, 2, 6428-35.

19. Zhao, Z.; Hu, Z.; Jiao, R.; et al. Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy. Storage. Mater. 2019, 22, 228-34.

20. Li, S.; Tu, J.; Zhang, G. H.; Wang, M.; Jiao, S. NiCo2S4 nanosheet with hexagonal architectures as an advanced cathode for Al-ion batteries. J. Electrochem. Soc. 2018, 165, A3504.

21. Yang, W.; Lu, H.; Cao, Y.; Xu, B.; Deng, Y.; Cai, W. Flexible free-standing MoS2/carbon nanofibers composite cathode for rechargeable aluminum-ion batteries. ACS. Sustain. Chem. Eng. 2019, 7, 4861-7.

22. Geng, L.; Scheifers, J. P.; Fu, C.; Zhang, J.; Fokwa, B. P. T.; Guo, J. Titanium sulfides as intercalation-type cathode materials for rechargeable aluminum batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 21251-7.

23. Xing, W.; Li, X.; Cai, T.; et al. Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim. Acta. 2020, 344, 136174.

24. Wang, S.; Jiao, S.; Wang, J.; et al. High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS. Nano. 2017, 11, 469-77.

25. Pan, W. D.; Liu, C.; Wang, M. Y.; et al. Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. Rare. Metals. 2022, 41, 762-74.

26. Yuan, D.; Dou, Y.; Wu, Z.; et al. Atomically thin materials for next-generation rechargeable batteries. Chem. Rev. 2022, 122, 957-99.

27. VahidMohammadi, A.; Hadjikhani, A.; Shahbazmohamadi, S.; Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS. Nano. 2017, 11, 11135-44.

28. Zhao, J.; Wen, J.; Bai, L.; et al. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries. Dalton. Trans. 2019, 48, 14433-9.

29. Li, J.; Zeng, F.; El-Demellawi, J. K.; et al. Nb2CTx MXene cathode for high-capacity rechargeable aluminum batteries with prolonged cycle lifetime. ACS. Appl. Mater. Interfaces. 2022, 14, 45254-62.

30. Tan, B.; Lu, T.; Luo, W.; Chao, Z.; Dong, R.; Fan, J. A novel MoS2-MXene composite cathode for aluminum-ion batteries. Energy. Fuels. 2021, 35, 12666-70.

31. Mahar, N.; Al-ahmed, A.; Al-saadi, A. A. Synthesis of vanadium carbide MXene with improved inter-layer spacing for SERS-based quantification of anti-cancer drugs. Appl. Surface. Sci. 2023, 607, 155034.

32. Ikram, M.; Raza, A.; Ali, S. 2D-materials for energy harvesting and storage applications. 2022.

33. Yu, Z.; Tu, J.; Wang, C.; Jiao, S. A rechargeable Al/graphite battery based on AlCl3/1-butyl-3-methylimidazolium chloride ionic liquid electrolyte. ChemistrySelect 2019, 4, 3018-24.

34. Nahian, M. K.; Reddy, R. G. Electrical conductivity and species distribution of aluminum chloride and 1-butyl-3-methylimidazolium chloride ionic liquid electrolytes. J. Phys. Org. Chem. 2023, 36, e4549.

35. Zheng, Y.; Dong, K.; Wang, Q.; Zhang, J.; Lu, X. Density, viscosity, and conductivity of lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J. Chem. Eng. Data. 2013, 58, 32-42.

36. Chen, C.; Shi, M.; Zhao, Y.; Yang, C.; Zhao, L.; Yan, C. Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chem. Eng. J. 2021, 422, 130375.

37. Yuan, Z.; Lin, Q.; Li, Y.; Han, W.; Wang, L. Effects of multiple ion reactions based on a CoSe2/MXene cathode in aluminum-ion batteries. Adv. Mater. 2023, 35, e2211527.

38. Angell, M.; Pan, C. J.; Rong, Y.; et al. High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. USA. 2017, 114, 834-9.

39. Xu, H.; Bai, T.; Chen, H.; et al. Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy. Storage. Mater. 2019, 17, 38-45.

40. Seong, W. M.; Yoon, K.; Lee, M. H.; Jung, S.; Kang, K. Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractive surface modification for lithium-ion batteries. Nano. Lett. 2019, 19, 29-37.

41. Nölle, R.; Beltrop, K.; Holtstiege, F.; Kasnatscheew, J.; Placke, T.; Winter, M. A reality check and tutorial on electrochemical characterization of battery cell materials: how to choose the appropriate cell setup. Mater. Today. 2020, 32, 131-46.

42. Chen, C.; Xie, X.; Anasori, B.; et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 2018, 57, 1846-50.

43. Zhu, N.; Zhang, K.; Wu, F.; Bai, Y.; Wu, C. Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries. Energy. Mater. Adv. 2021, 2021, 9204217.

44. Li, Z.; Niu, B.; Liu, J.; Li, J.; Kang, F. Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS. Appl. Mater. Interfaces. 2018, 10, 9451-9.

45. Shen, X.; Sun, T.; Yang, L.; et al. Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode. Nat. Commun. 2021, 12, 820.

46. Zheng, L.; Yang, H.; Bai, Y.; Wu, C. Multielectron reaction of AlCln in borophene for rechargeable aluminum batteries. Energy. Mater. Adv. 2022, 2022, 0005.

47. Pradhan, D.; Reddy, R. G. Mechanistic study of Al electrodeposition from EMIC-AlCl3 and BMIC-AlCl3 electrolytes at low temperature. Mater. Chem. Phys. 2014, 143, 564-9.

48. Elterman, V.; Shevelin, P. Y.; Yolshina, L.; Borozdin, A. Features of aluminum electrodeposition from 1,3-dialkylimidazolium chloride chloroaluminate ionic liquids. J. Mol. Liq. 2022, 351, 118693.

49. Shen, X.; Sun, T.; Wu, Z.; Tan, L. Ultrafast charging and ultralong cycle life in solid-state Al-ion batteries. J. Mater. Chem. A. 2022, 10, 8178-85.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/