REFERENCES

1. Eurostat. EU’s circular material use rate increased in 2020; 2021. Available from: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211125-1 [Last accessed on 15 Nov 2024].

2. Horák, J.; Kuboňová, L.; Hopan, F.; et al. Influence of co-combustion of unsuitable fuels with standardized fuels in households on CO, OGC, PM, and PAH emissions. Environ. Sci. Pollut. Res. Int. 2022, 29, 44297-307.

3. Ryšavý, J.; Horák, J.; Kuboňová, L.; et al. Beech leaves briquettes as fuel for a home combustion unit. 2020; pp. 75-85. Available from: https://www.researchgate.net/profile/Jiri-Rysavy/publication/343427834_BEECH_LEAVES_BRIQUETTES_AS_FUEL_FOR_A_HOME_COMBUSTION_UNIT/links/5f7344b5a6fdcc00864672d1/BEECH-LEAVES-BRIQUETTES-AS-FUEL-FOR-A-HOME-COMBUSTION-UNIT.pdf?origin=scientificContributions [Last accessed on 15 Nov 2024].

4. Pedrazzi, S.; Santunione, G.; Mustone, M.; et al. Techno-economic study of a small scale gasifier applied to an indoor hemp farm: from energy savings to biochar effects on productivity. Energy. Convers. Manag. 2021, 228, 113645.

5. Prakash, M.; Sarkar, A.; Sarkar, J.; Chakraborty, J. P.; Mondal, S. S.; Sahoo, R. R. Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production. Energy 2019, 167, 379-90.

6. Prakash, M.; Sarkar, A.; Sarkar, J.; Mondal, S. S.; Chakraborty, J. P. Proposal and design of a new biomass based syngas production system integrated with combined heat and power generation. Energy 2017, 133, 986-97.

7. Pedrazzi, S.; Santunione, G.; Minarelli, A.; Allesina, G. Energy and biochar co-production from municipal green waste gasification: A model applied to a landfill in the north of Italy. Energy. Convers. Manag. 2019, 187, 274-82.

8. Morselli, N.; Dalmonte, F.; Tartarini, P. Gasification as possible technological solution for driftwood management in bodies of waters. IOP. Conf. Ser. Earth. Environ. Sci. 2022, 1106, 012014.

9. Merzic, A.; Turkovic, N.; Ikanovic, N.; Lapandic, E.; Kazagic, A.; Music, M. Towards just transition of coal regions - cultivation of short rotation copies and dedicated energy crops for biomass co-firing vs photo voltaic power plants. Energy. Convers. Manag. X. 2022, 15, 100267.

10. Čespiva, J.; Jadlovec, M.; Výtisk, J.; Serenčíšová, J.; Tadeáš, O.; Honus, S. Softwood and solid recovered fuel gasification residual chars as sorbents for flue gas mercury capture. Environ. Technol. Innov. 2023, 29, 102970.

11. Čespiva, J.; Niedzwiecki, L.; Wnukowski, M.; et al. Torrefaction and gasification of biomass for polygeneration: production of biochar and producer gas at low load conditions. Energy. Rep. 2022, 8, 134-44.

12. Ryšavý, J.; Čespiva, J.; Kuboňová, L.; et al. Co-gasification of pistachio shells with wood pellets in a semi-industrial hybrid cross/updraft reactor for producer gas and biochar production. Fire 2024, 7, 87.

13. Fajimi, L. I.; Oboirien, B. O.; Adams, T. A. Simulation studies on the co-production of syngas and activated carbon from waste tyre gasification using different reactor configurations. Energy. Convers. Manag. X. 2021, 11, 100105.

14. Wystalska, K.; Malińska, K.; Barczak, M. Poultry manure derived biochars - the impact of pyrolysis temperature on selected properties and potentials for further modifications. J. Sustain. Dev. Energy. Water. Environ. Syst. 2021, 9, 1080337.

15. Castiglioni, M.; Rivoira, L.; Ingrando, I.; et al. Biochars intended for water filtration: a comparative study with activated carbons of their physicochemical properties and removal efficiency towards neutral and anionic organic pollutants. Chemosphere 2022, 288, 132538.

16. Sieradzka, M.; Mlonka-Mędrala, A.; Kalemba-Rec, I.; et al. Evaluation of physical and chemical properties of residue from gasification of biomass wastes. Energies 2022, 15, 3539.

17. Mlonka-Mędrala, A.; Hasan, T.; Kalawa, W.; et al. Possibilities of using zeolites synthesized from fly ash in adsorption chillers. Energies 2022, 15, 7444.

18. Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J. K.; Henriksen, U. B.; Hauggaard-Nielsen, H. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass. Bioenergy. 2015, 72, 300-8.

19. Santunionea, G.; Turi, E.; Paris, R.; Francia, E.; Montanari, M.; Cannazza, G. Production and use of co-composted biochar as soil amendment for cannabis sativa sp. growth. 2020. pp. 113-7. Available from: https://iris.unimore.it/handle/11380/1239367 [Last accessed on 15 Nov 2024].

20. Phuphuakrat, T.; Namioka, T.; Yoshikawa, K. Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption. Appl. Energy. 2010, 87, 2203-11.

21. Shen, Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification. Renew. Sustain. Energy. Rev. 2015, 43, 281-95.

22. Sur, A.; Das, R. K. Experimental investigation on waste heat driven activated carbon-methanol adsorption cooling system. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 2735-46.

23. Tchoffor, P. A.; Davidsson, K. O.; Thunman, H. Production of activated carbon within the dual fluidized bed gasification process. Ind. Eng. Chem. Res. 2015, 54, 3761-6.

24. Gañán, J.; Turegano, J. P.; Calama, G.; Roman, S.; Al-Kassir, A. Plant for the production of activated carbon and electric power from the gases originated in gasification processes. Fuel. Process. Technol. 2006, 87, 117-22.

25. Puglia, M.; Morselli, N.; Pedrazzi, S.; Tartarini, P.; Allesina, G.; Muscio, A. Specific and cumulative exhaust gas emissions in micro-scale generators fueled by syngas from biomass gasification. Sustainability 2021, 13, 3312.

26. Mlonka-Mędrala, A.; Sieradzka, M.; Magdziarz, A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022, 324, 124435.

27. Vonk, G.; Piriou, B.; Felipe, D. S. P.; Wolbert, D.; Vaïtilingom, G. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste. Manag. 2019, 85, 106-20.

28. Susastriawan, A. A.; Saptoadi, H. Effect of air supply location and equivalence ratio on thermal performance of downdraft gasifier fed by wood sawdust. J. Sustain. Dev. Energy. Water. Environ. Syst. 2023, 11, 1100435.

29. Čespiva, J.; Niedzwiecki, L.; Vereš, J.; et al. Evaluation of the performance of the cross/updraft type gasification technology with the sliding bed over a circular grate. Biomass. Bioenergy. 2022, 167, 106639.

30. Kupka, D.; Koloničný, J. Design and experimental investigation of a micro-scale bladeless-type steam turbine. Appl. Therm. Eng. 2024, 239, 122119.

31. Rückel, A.; Oppelt, A.; Leuter, P.; Johne, P.; Fendt, S.; Weuster-Botz, D. Conversion of syngas from entrained flow gasification of biogenic residues with Clostridium carboxidivorans and Clostridium autoethanogenum. Fermentation 2022, 8, 465.

32. Pacheco, M.; Pinto, F.; Ortigueira, J.; Silva, C.; Gírio, F.; Moura, P. Lignin syngas bioconversion by Butyribacterium methylotrophicum: advancing towards an integrated biorefinery. Energies 2021, 14, 7124.

33. Piatek, P.; Olsson, L.; Nygård, Y. Adaptation during propagation improves Clostridium autoethanogenum tolerance towards benzene, toluene and xylenes during gas fermentation. Bioresour. Technol. Rep. 2020, 12, 100564.

34. Rückel, A.; Hannemann, J.; Maierhofer, C.; Fuchs, A.; Weuster-Botz, D. Studies on syngas fermentation with Clostridium carboxidivorans in stirred-tank reactors with defined gas impurities. Front. Microbiol. 2021, 12, 655390.

35. Rahman, M. M.; Henriksen, U. B.; Ahrenfeldt, J.; Arnavat, M. P. Design, construction and operation of a low-tar biomass (LTB) gasifier for power applications. Energy 2020, 204, 117944.

36. Liakakou, E. T.; Vreugdenhil, B. J.; Cerone, N.; et al. Gasification of lignin-rich residues for the production of biofuels via syngas fermentation: comparison of gasification technologies. Fuel 2019, 251, 580-92.

37. Čespiva, J.; Wnukowski, M.; Niedzwiecki, L.; et al. Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime. Renew. Energy. 2020, 159, 775-85.

38. Marchelli, F.; Cordioli, E.; Patuzzi, F.; et al. Experimental study on H2S adsorption on gasification char under different operative conditions. Biomass. Bioenergy. 2019, 126, 106-16.

39. Kilpimaa, S.; Runtti, H.; Kangas, T.; Lassi, U.; Kuokkanen, T. Physical activation of carbon residue from biomass gasification: novel sorbent for the removal of phosphates and nitrates from aqueous solution. J. Ind. Eng. Chem. 2015, 21, 1354-64.

40. Výtisk, J.; Čespiva, J.; Jadlovec, M.; Kočí, V.; Honus, S.; Ochodek, T. Life cycle assessment applied on alternative production of carbon-based sorbents - a comparative study. Sustain. Mater. Technol. 2023, 35, e00563.

41. Kumdhitiahutsawakul, L.; Jirachaisakdeacha, D.; Kantha, U.; et al. Removal of hydrogen sulfide from swine-waste biogas on a pilot scale using immobilized Paracoccus versutus CM1. Microorganisms 2022, 10, 2148.

42. Wang, H.; Larson, R. A.; Runge, T. Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems. Bioresour. Technol. Rep. 2019, 7, 100232.

43. Silverstein, R. M.; Bassler, G. C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546.

44. Korus, A.; Ravenni, G.; Loska, K.; Korus, I.; Samson, A.; Szlęk, A. The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion. Renew. Energy. 2021, 173, 479-97.

45. Zhou, C.; Chen, Y.; Xing, X.; et al. Pilot-scale pyrolysis and activation of typical biomass chips in an interconnected dual fluidized bed: comparison and analysis of products. Renew. Energy. 2024, 225, 120339.

46. Tan, J.; Li, W.; Tang, L.; Chen, X.; Liu, H.; Wang, F. Study on the pyrolysis characteristics and char gasification kinetics of pre-separated automobile shredder residues. J. Environ. Chem. Eng. 2024, 12, 112520.

47. Zeghioud, H.; Fryda, L.; Djelal, H.; Assadi, A.; Kane, A. A comprehensive review of biochar in removal of organic pollutants from wastewater: characterization, toxicity, activation/functionalization and influencing treatment factors. J. Water. Process. Eng. 2022, 47, 102801.

48. Wu, L.; Guan, Y.; Li, C.; et al. Free-radical behaviors of co-pyrolysis of low-rank coal and different solid hydrogen-rich donors: a critical review. Chem. Eng. J. 2023, 474, 145900.

49. Jiang, X.; Wang, W.; Hu, B.; Zhang, B.; Li, K. Formation mechanism of CH4 during lignin pyrolysis: a theoretical study. J. Energy. Inst. 2022, 100, 237-44.

50. Hwang, S. Y.; Lee, G. B.; Kim, H.; Park, J. E. Influence of mixed methods on the surface area and gas products of activated carbon. Carbon. Lett. 2020, 30, 603-11.

51. Zhou, Q.; Cheung, C. S.; Leung, C. W.; Li, X.; Huang, Z. Explosion characteristics of bio-syngas at various fuel compositions and dilutions in a confined vessel. Fuel 2020, 259, 116254.

52. Skřínský, J.; Vereš, J.; Čespiva, J.; Ochodek, T.; Borovec, K.; Koloničný, J. Charakterystyka eksplozji gazu syntezowego z procesu zgazowania. Inżynieria. Mineralna. 2020, 2, 195-200.

53. Shivapuji, A. M.; Dasappa, S. Influence of fuel hydrogen fraction on syngas fueled SI engine: fuel thermo-physical property analysis and in-cylinder experimental investigations. Int. J. Hydrogen. Energy. 2015, 40, 10308-28.

54. Solferini de Carvalho, F.; Rufino, C. H.; Malheiro, O. E.; et al. Experimental investigation of hydrogen-producer gas mixtures in an optically accessible SI engine. Int. J. Hydrogen. Energy. 2024, 58, 500-13.

55. Lin, X.; Lei, H.; Wang, C.; et al. The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas. Renew. Energy. 2023, 202, 855-64.

56. Villardon, A.; Alcazar-Ruiz, A.; Dorado, F.; Sanchez-Silva, L. Enhancing carbon dioxide uptake in biochar derived from husk biomasses: optimizing biomass particle size and steam activation conditions. J. Environ. Chem. Eng. 2024, 12, 113352.

57. Zango, Z. U.; Garba, A.; Haruna, A.; et al. A systematic review on applications of biochar and activated carbon derived from biomass as adsorbents for sustainable remediation of antibiotics from pharmaceutical wastewater. J. Water. Process. Eng. 2024, 67, 106186.

58. Bélanger, N.; Gariépy, Y.; Francis, M.; et al. Assessment and enhancement of starch-based biochar as a sustainable filler in styrene-butadiene rubber composites via steam and CO2 activation treatments. Biomass. Bioenergy. 2024, 184, 107174.

59. Mlonka-Mędrala, A.; Gołombek, K.; Buk, P.; Cieślik, E.; Nowak, W. The influence of KCl on biomass ash melting behaviour and high-temperature corrosion of low-alloy steel. Energy 2019, 188, 116062.

60. Scala, F. Particle agglomeration during fluidized bed combustion: Mechanisms, early detection and possible countermeasures. Fuel. Process. Technol. 2018, 171, 31-8.

61. Damø, A. J.; Cafaggi, G.; Pedersen, M. N.; et al. Full-scale investigations of initial deposits formation in a cement plant co-fired with coal and SRF. Fuel 2023, 344, 128058.

62. Mlonka-Mędrala, A.; Magdziarz, A.; Gajek, M.; Nowińska, K.; Nowak, W. Alkali metals association in biomass and their impact on ash melting behaviour. Fuel 2020, 261, 116421.

63. Sieradzka, M.; Mlonka-Mędrala, A.; Magdziarz, A. Comprehensive investigation of the CO2 gasification process of biomass wastes using TG-MS and lab-scale experimental research. Fuel 2022, 330, 125566.

64. Attalla, M.; Sadek, S.; Salem, A. M.; Shafie, I. M.; Hassan, M. Experimental study of solar powered ice maker using adsorption pair of activated carbon and methanol. Appl. Therm. Eng. 2018, 141, 877-86.

65. Taghipour, H.; Amjad, Z.; Aslani, H.; Armanfar, F.; Dehghanzadeh, R. Characterizing and quantifying solid waste of rural communities. J. Mater. Cycles. Waste. Manag. 2016, 18, 790-7.

66. Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: deriving more value from waste. Science 2012, 337, 695-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/