REFERENCES
1. Avril S, Mansilla C, Busson M, Lemaire T. Photovoltaic energy policy: financial estimation and performance comparison of the public support in five representative countries. Energy Policy 2012;51:244-58.
2. Fthenakis VM, Kim HC, Alsema E. Emissions from photovoltaic life cycles. Environ Sci Technol 2008;42:2168-74.
3. Cheng J, Yeh C, Tu C. Trust and knowledge sharing in green supply chains. Int J Supply Chain Manag 2008;13:283-95.
4. Chowdhury M, Shahahmadi S, Chelvanathan P, et al. Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys 2020;16:102839.
5. Deng R, Chang NL, Ouyang Z, Chong CM. A techno-economic review of silicon photovoltaic module recycling. Renew Sust Energy Rev 2019;109:532-50.
6. Dias P, Javimczik S, Benevit M, Veit H. Recycling WEEE: polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Manag 2017;60:716-22.
7. Gholami A, Ameri M, Zandi M, Ghoachani RG, Pierfederici S, Kazem HA. Step-by-step guide to model photovoltaic panels: an up-to-date comparative review study. IEEE J Photovoltaics 2022;12:915-28.
8. Giacchetta G, Leporini M, Marchetti B. Evaluation of the environmental benefits of new high value process for the management of the end of life of thin film photovoltaic modules. J Clean Prod 2013;51:214-24.
9. Mahmoudi S, Huda N, Behnia M. Environmental impacts and economic feasibility of end of life photovoltaic panels in Australia: a comprehensive assessment. J Clean Prod 2020;260:120996.
10. Kang S, Yoo S, Lee J, Boo B, Ryu H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy 2012;47:152-9.
11. Chung J, Seo B, Lee J, Kim JY. Comparative analysis of I2-KI and HNO3 leaching in a life cycle perspective: towards sustainable recycling of end-of-life c-Si PV panel. J Hazard Mater 2021;404:123989.
12. Singh JK, Molinari G, Bui J, Soltani B, Rajarathnam GP, Abbas A. Life cycle assessment of disposed and recycled end-of-life photovoltaic panels in Australia. Sustainability 2021;13:11025.
13. Latunussa CE, Ardente F, Blengini GA, Mancini L. Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Mater Solar Cells 2016;156:101-11.
14. Huang W, Shin WJ, Wang L, Sun W, Tao M. Strategy and technology to recycle wafer-silicon solar modules. Solar Energy 2017;144:22-31.
15. Klugmann-radziemska E, Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy 2010;35:1751-9.
16. Klugmann-radziemska E, Ostrowski P, Drabczyk K, Panek P, Szkodo M. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Mater Solar Cells 2010;94:2275-82.
17. Lawson AC, Larson AC, Aronson MC, et al. Magnetic and crystallographic order in α-manganese. J Appl Phys 1994;76:7049-51.
19. Joseph T, White D. Understanding the role of concentrated phosphoric acid solutions as high-temperature silicon nitride etchants. ECS J Solid State Sci Technol 2021;10:024006.
20. Sundaram K, Sah R, Baumann H, Balachandran K, Todi R. Wet etching studies of silicon nitride thin films deposited by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition. Microelectron Eng 2003;70:109-14.
21. Gelder W, Hauser VE. The etching of silicon nitride in phosphoric acid with silicon dioxide as a mask. J Electrochem Soc 1967;114:869.
22. Radvanyi E, De Vito E, Porcher W, Larbi SJS. An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries. J Anal At Spectrom 2014;29:1120-31.
23. Philippe B, Dedryvère R, Allouche J, et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 2012;24:1107-15.
24. Franklin GE, Rich DH, Hong H, Miller T, Chiang T. Interface formation and growth of InSb on Si100. Phys Rev B Condens Matter 1992;45:3426-34.
25. Cros A, Saoudi R, Hollinger G, Hewett CA, Lau SS. An x-ray photoemission spectroscopy investigation of oxides grown on Au x Si1-x layers. J Appl Phys 1990;67:1826-30.
26. Rahman MM, Mateti S, Sultana I, et al. End-of-life photovoltaic recycled silicon: a sustainable circular materials source for electronic industries. Adv Energy Sustain Res 2021;2:2100081.
27. Li J, Dudney NJ, Nanda J, Liang C. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 2014;6:10083-8.
28. Li M, Hou X, Sha Y, et al. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources 2014;248:721-8.
29. Liu N, Liu J, Jia D, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries. Energy Storage Mater 2019;18:165-73.
30. Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 2007;163:1003-39.
31. Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc 2007;154:A103.
32. Wang M, Wang G, Wang S, et al. In situ catalytic growth 3D multi-layers graphene sheets coated nano-silicon anode for high performance lithium-ion batteries. Chem Eng J 2019;356:895-903.
33. Xing Y, Zhang L, Mao S, et al. Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Mater Res Bull 2018;108:170-5.
34. Tranchot A, Etiemble A, Thivel P, Idrissi H, Roué L. In-situ acoustic emission study of Si-based electrodes for Li-ion batteries. J Power Sources 2015;279:259-66.
35. Cleantech insights-Materials & Chemicals, 30 March 2023. Silicon anodes can improve EV battery density and extend range without cost increase. Available from: https://www.cleantech.com/silicon-anodes-can-improve-ev-battery-density-and-extend-range-without-cost-increase/ [Last accessed on 9 May 2024].
36. Su H, Fu C, Zhao Y, et al. Polycation binders: an effective approach toward lithium polysulfide sequestration in Li-S Batteries. ACS Energy Lett 2017;2:2591-7.
37. Koo B, Kim H, Cho Y, Lee KT, Choi N, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 2012;124:8892-7.