REFERENCES

1. Zou P, Wang Y, Chiang SW, Wang X, Kang F, Yang C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat Commun 2018;9:464.

2. Shen F, Zhang F, Zheng Y, et al. Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Mater 2018;13:323-8.

3. Hou G, Sun Q, Ai Q, et al. Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. J Power Sources 2019;416:141-7.

4. Wang H, Lin D, Xie J, et al. An interconnected channel-like framework as host for lithium metal composite anodes. Adv Energy Mater 2019;9:1802720.

5. Cui C, Yang C, Eidson N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv Mater 2020;32:e1906427.

6. Zhu B, Jin Y, Hu X, et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater 2017;29:1603755.

7. Wang G, Chen C, Chen Y, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew Chem Int Ed 2020;59:2055-60.

8. Ma J, Quhe R, Zhang Z, et al. Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li10GeP2S12 in lithium metal batteries. J Mater Chem A 2021;9:4810-21.

9. Umh HN, Park J, Yeo J, Jung S, Nam I, Yi J. Lithium metal anode on a copper dendritic superstructure. Electrochem Commun 2019;99:27-31.

10. Yi J, Chen J, Yang Z, et al. Facile patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv Energy Mater 2019;9:1901796.

11. Cao Z, Li B, Yang S. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv Mater 2019;31:e1901310.

12. Luo Y, Guo L, Xiao M, et al. Strategies for inhibiting anode dendrite growth in lithium-sulfur batteries. J Mater Chem A 2020;8:4629-46.

13. Pu J, Li J, Shen Z, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Funct Mater 2018;28:1804133.

14. Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater 2017;29:1702714.

15. Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci USA 2017;114:3584-9.

16. Huang S, Zhang W, Ming H, Cao G, Fan LZ, Zhang H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett 2019;19:1832-7.

17. Pu J, Li J, Zhang K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat Commun 2019;10:1896.

18. Zheng H, Zhang Q, Chen Q, et al. 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J Mater Chem A 2020;8:313-22.

19. Tang L, Zhang R, Zhang X, et al. ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes. J Mater Chem A 2019;7:19442-52.

20. Wang X, Zeng W, Hong L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy 2018;3:227-35.

21. Zhang D, Dai A, Fan B, et al. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl Mater Interfaces 2020;12:31542-51.

22. Qin L, Wang K, Xu H, et al. The role of mechanical pressure on dendritic surface toward stable lithium metal anode. Nano Energy 2020;77:105098.

23. Liu X, Liu J, Qian T, Chen H, Yan C. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode. Adv Mater 2020;32:e1902724.

24. Lu Z, Li W, Long Y, et al. Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode. Adv Funct Mater 2020;30:1907343.

25. Jeon H, Yeon D, Lee T, Park J, Ryou M, Lee YM. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 2016;315:161-8.

26. Cho J, Jung Y, Lee YS, Kim D. High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries. J Membrane Sci 2017;535:151-7.

27. Mao X, Shi L, Zhang H, et al. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. J Power Sources 2017;342:816-24.

28. Sabetzadeh N, Falamaki C, Riahifar R, et al. Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: assessment of separator performance in lithium-ion batteries. Solid State Ion 2021;363:115589.

29. Liu M, Zhang P, Gou L, Hou Z, Huang B. Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification. Mater Lett 2017;208:98-101.

30. Pan L, Wang H, Wu C, Liao C, Li L. Tannic-acid-coated polypropylene membrane as a separator for lithium-ion batteries. ACS Appl Mater Interfaces 2015;7:16003-10.

31. Zhao Y, Yan J, Cai W, et al. Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater 2019;23:306-13.

32. Cao C, Li Y, Feng Y, Peng C, Li Z, Feng W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater 2019;19:401-7.

33. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

34. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.

35. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 1996;6:15-50.

36. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

37. Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 2008;100:136406.

38. Henkelman G, Uberuaga BP, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 2000;113:9901-4.

39. Yan K, Lu Z, Lee H, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016;1:16010.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/