REFERENCES
1. Liu H, Liu X, Wang S, Liu H, Li L. Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Stor Mater 2020;28:122-45.
3. Shen X, Liu H, Cheng XB, Yan C, Huang JQ. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Stor Mater 2018;12:161-75.
4. Ni J, Zhu X, Yuan Y, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nat Commun 2020;11:1212.
5. Li Q, He G, Ding Y. Applications of low-melting-point metals in rechargeable metal batteries. Chemistry 2021;27:6407-21.
6. Shi Y, Yang W, Bai Q, Qin J, Zhang Z. Alloying/dealloying mechanisms, microstructural modulation and mechanical properties of nanoporous silver via a liquid metal-assisted alloying/dealloying strategy. J Alloys Compd 2021;872:159675.
7. Chi SS, Wang Q, Han B, et al. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett 2020;20:2724-32.
8. Yu J, Xia J, Guan X, et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for flexible lithium-ion batteries. Electrochim Acta 2022;425:140721.
9. Yun J, Park BK, Won ES, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett 2020;5:3108-14.
10. Won P, Jeong S, Majidi C, Ko SH. Recent advances in liquid-metal-based wearable electronics and materials. iScience 2021;24:102698.
11. Jia H, Wang Z, Dirican M, et al. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A 2021;9:5597-605.
12. Lv Y, Zhang QX, Li C, et al. Bottom-up Li deposition by constructing a multiporous lithiophilic gradient layer on 3D Cu foam for stable Li metal anodes. ACS Sustain Chem Eng 2022;10:7188-95.
13. Hyun G, Cao S, Ham Y, et al. Three-dimensional, submicron porous electrode with a density gradient to enhance charge carrier transport. ACS Nano 2022;16:9762-71.
14. Park S, Jeong SY, Lee TK, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat Commun 2021;12:838.
15. Ming J, Cao Z, Wu Y, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Lett 2019;4:2613-22.
16. Meda US, Lal L, M S, Garg P. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent advances. J Energy Stor 2022;47:103564.
17. Liu W, Liu P, Mitlin D. Solid electrolyte interphases: review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 2020;10:2070177.
18. Wu Y, Huang L, Huang X, et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ Sci 2017;10:1854-61.
19. Meng J, Li C. Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Stor Mater 2021;37:466-75.
20. Guo X, Zhang L, Ding Y, Goodenough JB, Yu G. Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ Sci 2019;12:2605-19.
21. Wei C, Tan L, Zhang Y, et al. Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Stor Mater 2022;50:473-94.
22. Yang Z, Yang D, Zhao X, et al. From liquid metal to stretchable electronics: overcoming the surface tension. Sci China Mater 2022;65:2072-88.
23. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33.
24. Han B, Xu D, Chi SS, et al. 500 Wh kg-1 class Li metal battery enabled by a self-organized core-shell composite anode. Adv Mater 2020;32:e2004793.
25. Sengupta S, Patra A, Akhtar M, Das K, Majumder SB, Das S. 3D microporous Sn-Sb-Ni alloy impregnated Ni foam as high-performance negative electrode for lithium-ion batteries. J Alloys Compd 2017;705:290-300.
26. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C. EGaIn-Metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Inter 2018;5:1701596.
27. Ding Y, Guo X, Qian Y, Xue L, Dolocan A, Yu G. Room-temperature all-liquid-metal batteries based on fusible alloys with regulated interfacial chemistry and wetting. Adv Mater 2020;32:e2002577.
28. Wei C, Tan L, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries in commercial carbonate-based electrolyte. Energy Stor Mater 2021;34:12-21.
29. Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater 2019;31:e1904309.
30. Guo X, Ding Y, Xue L, et al. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv Funct Mater 2018;28:1804649.
31. Wei C, Fei H, Tian Y, et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 2019;15:e1903214.
32. Yu S, Kaviany M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J Chem Phys 2014;140:064303.
33. Zhang Q, Lei X, Lv Y, Ma C, Liu X. Liquid metal-based cathode for flexible ambient Li-air batteries and its regeneration by water. Appl Surf Sci 2023;607:155074.
34. Savu SA, Casu MB, Schundelmeier S, et al. Nanoscale assembly, morphology and screening effects in nanorods of newly synthesized substituted pentacenes. RSC Adv 2012;2:5112-8.
35. Chao D, Ye C, Xie F, et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv Mater 2020;32:2001894.
36. Tang S, Song F, Lu M, Han K, Peng X. Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups. Sci China Chem 2019;62:451-9.
37. Wang C, Wang L, Li F, Cheng F, Chen J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 2017;29:1702212.