REFERENCES

1. Xu L, Lu Y, Zhao C, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater 2021;11:2002360.

2. Wang MJ, Kazyak E, Dasgupta NP, Sakamoto J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 2021;5:1371-90.

3. Kim A, Woo S, Kang M, Park H, Kang B. Research progresses of garnet-type solid electrolytes for developing all-solid-state Li batteries. Front Chem 2020;8:468.

4. Li L, Duan H, Li J, Zhang L, Deng Y, Chen G. Toward high performance all-solid-state lithium batteries with high-voltage cathode materials: design strategies for solid electrolytes, cathode interfaces, and composite electrodes. Adv Energy Mater 2021;11:2003154.

5. Alexander GV, Indu MS, Murugan R. Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics 2021;27:4105-26.

6. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R. Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Pro Mater Sci 2017;88:325-411.

7. Liang L, Sun X, Zhang J, et al. Sur-/interfacial regulation in all-solid-state rechargeable Li-ion batteries based on inorganic solid-state electrolytes: advances and perspectives. Mater Horiz 2019;6:871-910.

8. Peng L, Ren H, Zhang J, et al. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Stor Mater 2021;43:53-61.

9. He Z, Zhang Z, Yu M, et al. Synthetic optimization and application of Li-argyrodite Li6PS5I in solid-state battery at different temperatures. Rare Met 2022;41:798-805.

10. Huang X, Lu Y, Song Z, Xiu T, Badding ME, Wen Z. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: sintering, microstructure, performance and the role of MgO. J Energy Chem 2019;39:8-16.

11. Huang X, Su J, Song Z, et al. Synthesis of Ga-doped Li7La3Zr2O12 solid electrolyte with high Li+ ion conductivity. Ceram Int 2021;47:2123-30.

12. Iriyama Y, Wadaguchi M, Yoshida K, Yamamoto Y, Motoyama M, Yamamoto T. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition. J Power Sources 2018;385:55-61.

13. Huang X, Tang J, Zhou Y, et al. Developing preparation craft platform for solid electrolytes containing volatile components: experimental study of competition between lithium loss and densification in Li7La3Zr2O12. ACS Appl Mater Interfaces 2022;14:33340-54.

14. Thompson T, Yu S, Williams L, et al. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett 2017;2:462-8.

15. Ma C, Cheng Y, Yin K, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 2016;16:7030-6.

16. Huang X, Xiu T, Badding ME, Wen Z. Two-step sintering strategy to prepare dense Li-Garnet electrolyte ceramics with high Li+ conductivity. Ceram Int 2018;44:5660-7.

17. Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 2009;182:2046-52.

18. Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J. High conductivity of dense tetragonal Li7La3Zr2O12. J Power Sources 2012;208:193-6.

19. Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X=0-2). J Power Sources 2011;196:3342-5.

20. Li Y, Wang C, Xie H, Cheng J, Goodenough JB. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem Commun 2011;13:1289-92.

21. Allen J, Wolfenstine J, Rangasamy E, Sakamoto J. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources 2012;206:315-9.

22. Kotobuki M, Kanamura K, Sato Y, Yoshida T. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J Power Sources 2011;196:7750-4.

23. Huang X, Lu Y, Song Z, et al. Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte. Energy Stor Mater 2019;22:207-17.

24. Huang X, Lu Y, Guo H, et al. None-mother-powder method to prepare dense Li-garnet solid electrolytes with high critical current density. ACS Appl Energy Mater 2018;1:5355-65.

25. Nguyen MH, Park S. Synergetic effect of Li-ion concentration and triple doping on ionic conductivity of Li7La3Zr2O12 solid electrolyte. Nanomaterials 2022;12:2946.

26. Zhou Y, Li X, Yang Y, Huang X, Tian B. Production of Ta-doped Li7La3Zr2O12 solid electrolyte with high critical current density. ACS Appl Energy Mater 2022;5:13817-28.

27. Huang X, Lu Y, Niu Y, et al. From protonation & Li-rich contamination to grain-boundary segregation: evaluations of solvent-free vs. wet routes on preparing Li7La3Zr2O12 solid electrolyte. J Energy Chem 2022;73:223-39.

28. Smetaczek S, Limbeck A, Zeller V, et al. Li+/H+ exchange of Li7La3Zr2O12 single and polycrystals investigated by quantitative LIBS depth profiling. Mater Adv 2022;3:8760-70.

29. Arinicheva Y, Guo X, Gerhards M, et al. Competing effects in the hydration mechanism of a garnet-type Li7La3Zr2O12 electrolyte. Chem Mater 2022;34:1473-80.

30. Nie K, Wu S, Wang J, et al. Reaction mechanisms of Ta-substituted cubic Li7La3Zr2O12 with solvents during storage. ACS Appl Mater Interfaces 2021;13:38384-93.

31. Gupta A, Kazyak E, Dasgupta NP, Sakamoto J. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources 2020;474:228598.

32. Wood M, Gao X, Shi R, et al. Exploring the relationship between solvent-assisted ball milling, particle size, and sintering temperature in garnet-type solid electrolytes. J Power Sources 2021;484:229252.

33. Zheng H, Li G, Liu J, et al. A rational design of garnet-type Li7La3Zr2O12 with ultrahigh moisture stability. Energy Stor Mater 2022;49:278-90.

34. Zheng H, Li G, Liu H, Wu Y, Duan H. Influence of dry- and wet-milled LLZTO particles on the sintered pellets. J Am Ceram Soc 2023;106:274-84.

35. Huang X, Song Z, Xiu T, Badding ME, Wen Z. Searching for low-cost LixMOy compounds for compensating Li-loss in sintering of Li-Garnet solid electrolyte. J Materiomics 2019;5:221-8.

36. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int 2007;46:7778-81.

37. Zheng C, Ruan Y, Su J, et al. Grain boundary modification in garnet electrolyte to suppress lithium dendrite growth. Chem Eng J 2021;411:128508.

38. Zheng C, Lu Y, Su J, et al. Grain boundary engineering enabled high-performance garnet-type electrolyte for lithium dendrite free lithium metal batteries. Small Methods 2022;6:e2200667.

39. Kataoka K, Akimoto J. Large single-crystal growth of tetragonal garnet-type Li7La3Zr2O12 by melting method. Solid State Ionics 2020;349:115312.

40. Kataoka K. Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications. J Ceram Soc Japan 2020;128:7-18.

41. Kudo H, Wu C, Ihle H. Mass-spectrometric study of the vaporization of Li2Os and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2. J Nucl Mater 1978;78:380-9.

42. Li Y, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012;22:15357-61.

43. Larraz G, Orera A, Sanjuán ML. Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J Mater Chem A 2013;1:11419-28.

44. Huang X, Song Z, Xiu T, Badding ME, Wen Z. Sintering, micro-structure and Li+ conductivity of Li7-La3Zr2-NbO12/MgO (x = 0.2-0.7) Li-garnet composite ceramics. Ceram Int 2019;45:56-63.

45. Cai J, Polzin B, Fan L, et al. Stoichiometric irreversibility of aged garnet electrolytes. Mater Today Energy 2021;20:100669.

46. Liu C, Rui K, Shen C, Badding ME, Zhang G, Wen Z. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. J Power Sources 2015;282:286-93.

47. Pfeiffer H, Bosch P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chem Mater 2005;17:1704-10.

48. Baral AK, Narayanan S, Ramezanipour F, Thangadurai V. Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2-xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Phys Chem Chem Phys 2014;16:11356-65.

49. Samsinger RF, Letz M, Schuhmacher J, et al. Fast ion conduction of sintered glass-ceramic lithium ion conductors investigated by impedance spectroscopy and coaxial reflection technique. J Electrochem Soc 2020;167:140510.

50. Dion F, Lasia A. The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes. J Electroanal Chem 1999;475:28-37.

51. Zhang Y, Chen Y, Yan M, Chen F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J Power Sources 2015;283:464-77.

52. Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014;16:18294-300.

53. Jones JC, Rajendran S, Pilli A, et al. In situ x-ray photoelectron spectroscopy study of lithium carbonate removal from garnet-type solid-state electrolyte using ultra high vacuum techniques. J Vac Sci Technol A 2020;38:023201.

54. Han F, Zhu Y, He X, Mo Y, Wang C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016;6:1501590.

55. Yuan K, Jin X, Xu C, et al. Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method. Appl Phys A 2018;124:403.

56. Huang Y, Chen J, Ni J, Zhou H, Zhang X. A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. J Power Sources 2009;188:538-45.

57. Tenhaeff WE, Rangasamy E, Wang Y, et al. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 2014;1:375-8.

58. Kim Y, Yoo A, Schmidt R, et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against Metallic Lithium. Front Energy Res 2016;4:20.

59. Tang J, Niu Y, Zhou Y, et al. H3PO4-induced Nano-Li3PO4 pre-reduction layer to address instability between the Nb-Doped Li7La3Zr2O12 electrolyte and metallic Li anode. ACS Appl Mater Interfaces 2023;15:5345-56.

60. Niu Y, Yu Z, Zhou Y, et al. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: a nano-interlayer/Li pre-reduction strategy. Nano Res 2022;15:7180-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/