REFERENCES

1. Zhao D, Yu Y, Wang C, et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat Energy 2017;2:17018.

2. Weber D. CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 1978;33:1443-5.

3. Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO- electrodes. Nature 2021;598:444-50.

4. Xia Y, Zhu M, Qin L, et al. Organic-inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater 2023;3:300004.

5. Lu YN, Zhong JX, Yu Y, et al. Constructing an n/n+ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy Environ Sci 2021;14:4048-58.

6. Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. AIP Conf Proc 2013;1556:22-5.

7. Haase F, Hollemann C, Schäfer S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells. Sol Energy Mater Sol Cells 2018;186:184-93.

8. Chen Y, Tan S, Li N, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics. Joule 2020;4:1961-76.

9. Izydorczyk W, Waczyński K, Izydorczyk J, et al. Electrical and optical properties of spin-coated SnO2 nanofilms. Mater Sci Pol 2014;32:729-36.

10. D’Innocenzo V, Grancini G, Alcocer MJ, et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun 2014;5:3586.

11. Kim H, Hunger J, Cánovas E, et al. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites. Nat Commun 2017;8:687.

12. Manoogian A, Woolley JC. Temperature dependence of the energy gap in semiconductors. Can J Phys 1984;62:285-7.

13. Geng W, Zhang L, Zhang Y, Lau W, Liu L. First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C 2014;118:19565-71.

14. Umebayashi T, Asai K, Kondo T, Nakao A. Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B 2003;67:155405.

15. Dai J, Zheng H, Zhu C, Lu J, Xu C. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J Mater Chem C 2016;4:4408-13.

16. Baikie T, Fang Y, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A 2013;1:5628-41.

17. Francisco-lópez A, Charles B, Alonso MI, et al. Phase diagram of methylammonium/formamidinium lead iodide perovskite solid solutions from temperature-dependent photoluminescence and raman spectroscopies. J Phys Chem C 2020;124:3448-58.

18. Wu K, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys 2014;16:22476-81.

19. Phillips JE, Birkmire RW, Mccandless BE, Meyers PV, Shafarman WN. Polycrystalline heterojunction solar cells: a device perspective. Physica Status Solidi 1996;194:31-9.

20. Hegedus SS, Shafarman WN. Thin-film solar cells: device measurements and analysis. Prog Photovolt 2004;12:155-76.

21. Li Y, Zhuang D, Zhao M, et al. Study on the performance of oxygen-rich Zn(O,S) buffers fabricated by sputtering deposition and Zn(O,S)/Cu(In,Ga)(S,Se)2 interfaces. ACS Appl Mater Interfaces 2022;14:24435-46.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/