1. Armand M, Axmann P, Bresser D, et al. Lithium-ion batteries - current state of the art and anticipated developments. J Power Sources 2020;479:228708.
2. Miao Y, Hynan P, von Jouanne A, Yokochi A. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 2019;12:1074.
3. Rangarajan SS, Sunddararaj SP, Sudhakar A, et al. Lithium-ion batteries - the crux of electric vehicles with opportunities and challenges. Clean Technol 2022;4:908-30.
4. Gandoman FH, Jaguemont J, Goutam S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Appl Energy 2019;251:113343.
5. Fang C, Wang X, Meng YS. Key issues hindering a practical lithium-metal anode. Trends Chem 2019;1:152-8.
6. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Stor Mater 2018;10:246-67.
7. Feng X, Ren D, He X, Ouyang M. Mitigating thermal runaway of lithium-ion batteries. Joule 2020;4:743-70.
8. Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 2014;4:1300882.
9. Teki R, Datta MK, Krishnan R, et al. Nanostructured silicon anodes for lithium ion rechargeable batteries. Small 2009;5:2236-42.
10. Schwan J, Nava G, Mangolini L. Critical barriers to the large scale commercialization of silicon-containing batteries. Nanoscale Adv 2020;2:4368-89.
11. Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008;3:31-5.
12. Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. Lithium batteries and the solid electrolyte interphase (SEI) - progress and outlook. Adv Energy Mater 2023;13:2203307.
13. Liu Q, Meng T, Yu L, et al. Interface engineering to boost thermal safety of microsized silicon anodes in lithium-ion batteries. Small Methods 2022;6:e2200380.
14. Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems - the solid electrolyte interphase model. J Electrochem Soc 1979;126:2047-51.
15. Peled E, Menkin S. Review - SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.
16. Shin J, Kim T, Lee Y, Cho E. Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Stor Mater 2020;25:764-81.
17. Xu C, Lindgren F, Philippe B, et al. Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem Mater 2015;27:2591-9.
18. Kennedy T, Brandon M, Laffir F, Ryan KM. Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. J Power Sources 2017;359:601-10.
19. Kalhoff J, Eshetu GG, Bresser D, Passerini S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 2015;8:2154-75.
20. Krishna DNG, Philip J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): recent developments and challenges. Appl Surf Sci Adv 2022;12:100332.
21. Tan S, Ji YJ, Zhang ZR, Yang Y. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Chemphyschem 2014;15:1956-69.
22. Xu Z, Yang J, Li H, Nuli Y, Wang J. Electrolytes for advanced lithium ion batteries using silicon-based anodes. J Mater Chem A 2019;7:9432-46.
23. Stokes K, Kennedy T, Kim GT, et al. Influence of carbonate-based additives on the electrochemical performance of Si NW anodes cycled in an ionic liquid electrolyte. Nano Lett 2020;20:7011-9.
24. Whiteley JM, Kim JW, Piper DM, Lee S. High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries. J Electrochem Soc 2016;163:A251-4.
25. Falco M, Lingua G, Destro M, et al. An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries. Mater Today Sustain 2023;21:100299.
26. Bellusci M, Simonetti E, De Francesco M, Appetecchi GB. Ionic liquid electrolytes for safer and more reliable sodium battery systems. Appl Sci 2020;10:6323.
27. Montanino M, Alessandrini F, Passerini S, Appetecchi GB. Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices. Electrochim Acta 2013;96:124-33.
28. De Francesco M, Simonetti E, Gorgi G, Appetecchi GB. About the purification route of ionic liquid precursors. Challenges 2017;8:11.
29. Geaney H, Dickinson C, O’dwyer C, Mullane E, Singh A, Ryan KM. Growth of crystalline copper silicide nanowires in high yield within a high boiling point solvent system. Chem Mater 2012;24:4319-25.
30. Stokes K, Geaney H, Sheehan M, Borsa D, Ryan KM. Copper silicide nanowires as hosts for amorphous Si deposition as a route to produce high capacity lithium-ion battery anodes. Nano Lett 2019;19:8829-35.
31. Mullane E, Kennedy T, Geaney H, Dickinson C, Ryan KM. Synthesis of tin catalyzed silicon and germanium nanowires in a solvent-vapor system and optimization of the seed/nanowire interface for dual lithium cycling. Chem Mater 2013;25:1816-22.
32. Brutti S, Simonetti E, De Francesco M, et al. Ionic liquid electrolytes for high-voltage, lithium-ion batteries. J Power Sources 2020;479:228791.
33. Kim GT, Kennedy T, Brandon M, et al. Behavior of germanium and silicon nanowire anodes with ionic liquid electrolytes. ACS Nano 2017;11:5933-43.
34. Zhang W. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J Power Sources 2011;196:877-85.
35. Ševčík A. Oscillographic polarography with periodical triangular voltage. Collect Czech Chem Commun 1948;13:349-77.
36. Randles JEB. A cathode ray polarograph. Part II. - The current-voltage curves. Trans Faraday Soc 1948;44:327-38.
37. Ai Q, Li D, Guo J, et al. Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries. Adv Mater Inter 2019;6:1901187.
38. de Rooij DMR. Electrochemical methods: fundamentals and applications. Anti-Corros Methods Mater 2003:50.
39. Tsierkezos NG. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J Solution Chem 2007;36:289-302.
40. Kant R. Theory for staircase voltammetry and linear scan voltammetry on fractal electrodes: emergence of anomalous randles-sevik behavior. Electrochim Acta 2013;111:223-33.
41. Churikov A, Ivanishchev A, Ivanishcheva I, Sycheva V, Khasanova N, Antipov E. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 2010;55:2939-50.
42. Churikov AV, Ivanishchev AV, Ushakov AV, Romanova VO. Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries. J Solid State Electrochem 2014;18:1425-41.
43. Zeng W, Wang L, Peng X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv Energy Mater 2018;8:1702314.
44. Sivonxay E, Aykol M, Persson KA. The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim Acta 2020;331:135344.
45. Wang G, Xu B, Shi J, Wu M, Su H, Ouyang C. New insights into Li diffusion in Li-Si alloys for Si anode materials: role of Si microstructures. Nanoscale 2019;11:14042-9.
47. Macdonald JR, Johnson WB. Fundamentals of impedance spectroscopy. In: Barsoukov E, Macdonald JR, editors. Impedance spectroscopy. Hoboken, NJ: John Wiley & Sons, Inc.; 2018. pp. 1-20.
48. Middlemiss LA, Rennie AJ, Sayers R, West AR. Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep 2020;6:232-41.
49. Barsoukov E, Macdonald JR. Impedance spectroscopy: theory, experiment, and applications. Hoboken, NJ: John Wiley & Sons, Inc.; 2005.
50. Xu W, Flake JC. Composite silicon nanowire anodes for secondary lithium-ion cells. J Electrochem Soc 2010;157:A41.
51. Li J, Dahn JR. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 2007;154:A156.
52. Appetecchi G, Shin J, Alessandrini F, Passerini S. 0.6Ah Li/V2O5 battery prototypes based on solvent-free PEO-LiN(SO2CF2CF3)2 polymer electrolytes. J Power Sources 2005;143:236-42.
53. Appetecchi GB, Passerini S. Poly(ethylene oxide)-LiN(SO2CF2CF3)2 polymer electrolytes: II. Characterization of the interface with lithium. J Electrochem Soc 2002;149:A891.
54. Hou T, Yang G, Rajput NN, et al. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019;64:103881.
55. Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edström K. Improved performances of nanosilicon electrodes using the salt LiFSI: a photoelectron spectroscopy study. J Am Chem Soc 2013;135:9829-42.
56. Wu Z, Deng L, Li J, et al. Solid electrolyte interphase layer formation on the Si-based electrodes with and without binder studied by XPS and ToF-SIMS analysis. Batteries 2022;8:271.
57. Nakai H, Kubota T, Kita A, Kawashima A. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 2011;158:A798-801.
58. Philippe B, Dedryvère R, Allouche J, et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater 2012;24:1107-15.
59. Morales-ugarte JE, Bolimowska E, Rouault H, Santos-peña J, Santini CC, Benayad A. EIS and XPS investigation on SEI layer formation during first discharge on graphite electrode with a vinylene carbonate doped imidazolium based ionic liquid electrolyte. J Phys Chem C 2018;122:18223-30.
60. Piper DM, Evans T, Leung K, et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat Commun 2015;6:6230.
61. Forster-tonigold K, Buchner F, Bansmann J, Behm RJ, Groß A. A combined XPS and computational study of the chemical reduction of BMP-TFSI by lithium. Batteries Supercaps 2022;5:e202200307.
62. Karimi N, Zarrabeitia M, Geaney H, et al. Stable cycling of Si nanowire electrodes in fluorine-free cyano-based ionic liquid electrolytes enabled by vinylene carbonate as SEI-forming additive. J Power Sources 2023;558:232621.
63. Wu J, Ihsan-ul-haq M, Chen Y, Kim J. Understanding solid electrolyte interphases: advanced characterization techniques and theoretical simulations. Nano Energy 2021;89:106489.
64. Bhattacharyya S, Hong J, Turban G. Determination of the structure of amorphous nitrogenated carbon films by combined Raman and X-ray photoemission spectroscopy. J Appl Phys 1998;83:3917-9.
65. Dementjev A, de Graaf A, van de Sanden M, Maslakov K, Naumkin A, Serov A. X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films. Diam Relat Mater 2000;9:1904-7.
66. Buchner F, Forster-Tonigold K, Bozorgchenani M, Gross A, Behm RJ. Interaction of a self-assembled ionic liquid layer with graphite(0001): a combined experimental and theoretical study. J Phys Chem Lett 2016;7:226-33.
67. Blyth R, Buqa H, Netzer F, et al. XPS studies of graphite electrode materials for lithium ion batteries. Appl Surface Sci 2000;167:99-106.
68. Nguyen CC, Song S. Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte. Electrochem Commun 2010;12:1593-5.
69. Bhattacharyya S, Cardinaud C, Turban G. Spectroscopic determination of the structure of amorphous nitrogenated carbon films. J Appl Phys 1998;83:4491-500.
70. Martin L, Martinez H, Ulldemolins M, Pecquenard B, Le Cras F. Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: the influence of vinylene carbonate additive. Solid State Ion 2012;215:36-44.
71. Vogl US, Lux SF, Das P, et al. The mechanism of SEI formation on single crystal Si(100), Si(110) and Si(111) electrodes. J Electrochem Soc 2015;162:A2281-8.
72. Dedryvère R, Gireaud L, Grugeon S, Laruelle S, Tarascon JM, Gonbeau D. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. J Phys Chem B 2005;109:15868-75.
73. Etacheri V, Geiger U, Gofer Y, et al. Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: a surface chemical investigation. Langmuir 2012;28:6175-84.
74. Dedryvère R, Leroy S, Martinez H, Blanchard F, Lemordant D, Gonbeau D. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J Phys Chem B 2006;110:12986-92.
75. Kim H, Grugeon S, Gachot G, Armand M, Sannier L, Laruelle S. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives. Electrochim Acta 2014;136:157-65.
76. Sharova V, Moretti A, Diemant T, Varzi A, Behm R, Passerini S. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J Power Sources 2018;375:43-52.
77. Eshetu GG, Diemant T, Grugeon S, et al. In-Depth interfacial chemistry and reactivity focused investigation of lithium-imide- and lithium-imidazole-based electrolytes. ACS Appl Mater Interfaces 2016;8:16087-100.
78. Leung K, Rempe SB, Foster ME, et al. Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries. J Electrochem Soc 2014;161:A213-21.
79. Ensling D, Stjerndahl M, Nytén A, Gustafsson T, Thomas JO. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J Mater Chem 2009;19:82-8.
80. Nie M, Lucht BL. Role of lithium salt on solid electrolyte interface (SEI) formation and structure in lithium ion batteries. J Electrochem Soc 2014;161:A1001-6.
81. Choi N, Yew KH, Lee KY, Sung M, Kim H, Kim S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 2006;161:1254-9.
82. Li Q, Liu X, Han X, et al. Identification of the solid electrolyte interface on the Si/C composite anode with FEC as the additive. ACS Appl Mater Interfaces 2019;11:14066-75.
83. Bongiorno C, Mannino G, D’alessio U, et al. On the redox activity of the solid electrolyte interphase in the reduction/oxidation of silicon nanoparticles in secondary lithium batteries. Energy Technol 2022;10:2100791.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.