1. Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy 2019;4:180-6.
2. Ren B, Cui H, Wang C. Self-supported graphene nanosheet-based composites as binder-free electrodes for advanced electrochemical energy conversion and storage. Electrochem Energy Rev 2022;5:2-27.
3. Song H, Su J, Wang C. The anion-cation relay battery prototype. Small Sci 2021;1:2000030.
4. Wu L, Sun R, Xiong F, et al. A rechargeable aluminum-ion battery based on a VS2 nanosheet cathode. Phys Chem Chem Phys 2018;20:22563-8.
5. Canepa P, Sai Gautam G, Hannah DC, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 2017;117:4287-341.
6. Song H, Li Y, Tian F, Wang C. Electrolyte optimization and interphase regulation for significantly enhanced storage capability in Ca-metal batteries. Adv Funct Mater 2022;32:2200004.
7. Song H, Su J, Wang C. Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv Mater 2021;33:e2006141.
8. Song H, Wang C. Current status and challenges of calcium metal batteries. Adv Energy Sustain Res 2022;3:2100192.
9. Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 2014;114:11683-720.
10. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci 2019;12:3288-304.
11. Yan Y, Li B, Guo W, Pang H, Xue H. Vanadium based materials as electrode materials for high performance supercapacitors. J Power Sources 2016;329:148-69.
12. Xu X, Xiong F, Meng J, et al. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv Funct Mater 2020;30:1904398.
13. Liu S, Kang L, Kim JM, Chun YT, Zhang J, Jun SC. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater 2020;10:2000477.
14. Prasadam V, Bahlawane N, Mattelaer F, et al. Atomic layer deposition of vanadium oxides: process and application review. Mater Today Chem 2019;12:396-423.
15. Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 2019;58:16358-67.
16. Xu Y, Deng X, Li Q, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 2019;5:1194-209.
17. Miao X, Chen Z, Wang N, et al. Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy 2017;34:26-35.
18. Hu P, Hu P, Vu TD, et al. Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chem Rev 2023;123:4353-415.
19. Zou C, Fan L, Chen R, et al. Thermally driven V2O5 nanocrystal formation and the temperature-dependent electronic structure study. CrystEngComm 2012;14:626-31.
20. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ. Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 2015;287:15-27.
21. Lee S, Ivanov IN, Keum JK, Lee HN. Epitaxial stabilization and phase instability of VO2 polymorphs. Sci Rep 2016;6:19621.
22. Wei M, Sugihara H, Honma I, Ichihara M, Zhou H. A New metastable phase of crystallized V2O4·0.25H2O nanowires: synthesis and electrochemical measurements. Adv Mater 2005;17:2964-9.
23. Chernova NA, Roppolo M, Dillon AC, Whittingham MS. Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 2009;19:2526.
24. Liu M, Su B, Tang Y, Jiang X, Yu A. Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv Energy Mater 2017;7:1700885.
25. Jin T, Li H, Li Y, Jiao L, Chen J. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy 2018;50:462-7.
26. Yi T, Qiu L, Qu J, Liu H, Zhang J, Zhu Y. Towards high-performance cathodes: design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries. Coord Chem Rev 2021;446:214124.
27. Li H, He P, Wang Y, Hosono E, Zhou H. High-surface vanadium oxides with large capacities for lithium-ion batteries: from hydrated aerogel to nanocrystalline VO2(B), V6O13 and V2O5. J Mater Chem 2011;21:10999.
28. Shin J, Choi DS, Lee HJ, Jung Y, Choi JW. Hydrated Intercalation for high-performance aqueous zinc ion batteries. Adv Energy Mater 2019;9:1900083.
29. Zhang Y, Liu X, Xie G, et al. Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7·H2O single-crystal nanobelts. Mater Sci Eng B 2010;175:164-71.
30. Lv T, Peng Y, Zhang G, et al. How about vanadium-based compounds as cathode materials for aqueous zinc ion batteries? Adv Sci 2023;10:e2206907.
31. Liu Y, Xu L, Guo X, Lv T, Pang H. Vanadium sulfide based materials: synthesis, energy storage and conversion. J Mater Chem A 2020;8:20781-802.
32. Rout CS, Kim BH, Xu X, et al. Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J Am Chem Soc 2013;135:8720-5.
33. Feng J, Sun X, Wu C, et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 2011;133:17832-8.
34. Yao K, Wu M, Chen D, et al. Vanadium tetrasulfide for next-generation rechargeable batteries: advances and challenges. Chem Rec 2022;22:e202200117.
35. Hu Z, Liu Q, Chou SL, Dou SX. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 2017;29:1700606.
36. Sun R, Wei Q, Li Q, et al. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Appl Mater Interfaces 2015;7:20902-8.
37. Cheng S, Yao K, Zheng K, et al. Self-assembled VS4 hierarchitectures with enhanced capacity and stability for sodium storage. Energy Environ Mater 2022;5:592-8.
38. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 2016;1:16119.
39. Yang Y, Tang Y, Liang S, et al. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy 2019;61:617-25.
40. Sarkar S, Banda H, Mitra S. High capacity lithium-ion battery cathode using LiV3O8 nanorods. Electrochim Acta 2013;99:242-52.
41. Oka Y, Yao T, Yamamoto N. Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs). Mater Res Bull 1997;32:1201-9.
42. Krachodnok S, Haller KJ, Willaims ID. Improved synthesis of alkali metal vanadates using a hydrothermal method. Eng J 2012;16:19-28.
43. Wadsley AD. Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8. Acta Cryst 1957;10:261-7.
44. Peng S, Li L, Hu Y, et al. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015;9:1945-54.
45. Ming F, Liang H, Lei Y, Kandambeth S, Eddaoudi M, Alshareef HN. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett 2018;3:2602-9.
46. Wang J, Wang J, Jiang Y, et al. CaV6O16·2.8H2O with Ca2+ pillar and water lubrication as a high-rate and long-life cathode material for ca-ion batteries. Adv Funct Mater 2022;32:2113030.
47. Li J, Mccoll K, Lu X, et al. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv Energy Mater 2020;10:2000058.
48. Liu Y, Li C, Xu J, et al. Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy 2020;67:104211.
49. Tang C, Xiong F, Lan B, et al. Constructing a disorder/order structure for enhanced magnesium storage. Chem Eng J 2020;382:123049.
50. Ma XF, Li HY, Zhu X, et al. Switchable and strain-releasable Mg-ion diffusion nanohighway enables high-capacity and long-life pyrovanadate cathode. Small 2022;18:e2202250.
51. Liu Y, Li Q, Ma K, Yang G, Wang C. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 2019;13:12081-9.
52. Zhu K, Jiang W, Wang Z, et al. Hewettite ZnV6O16 · 8H2O with remarkably stable layers and ultralarge interlayer spacing for high-performance aqueous Zn-ion batteries. Angew Chem Int Ed 2023;62:e202213368.
53. Yang W, Yang W, Huang Y, Xu C, Dong L, Peng X. Reversible aqueous zinc-ion battery based on ferric vanadate cathode. Chin Chem Lett 2022;33:4628-34.
54. Wei T, Li Q, Yang G, Wang C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J Mater Chem A 2018;6:20402-10.
55. Vo TN, Kim H, Hur J, Choi W, Kim IT. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J Mater Chem A 2018;6:22645-54.
56. Wei T, Liu Y, Yang G, Wang C. Aluminum vanadate hollow spheres as zero-strain cathode material for highly reversible and durable aqueous zinc-ion batteries. Energy Storage Mater 2020;30:130-7.
57. Li Y, Liu Y, Chen J, et al. Polyaniline intercalation induced great enhancement of electrochemical properties in ammonium vanadate nanosheets as an advanced cathode for high-performance aqueous zinc-ion batteries. Chem Eng J 2022;448:137681.
58. Liu C, Massé R, Nan X, Cao G. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater 2016;4:15-58.
59. Jian Z, Hu YS, Ji X, Chen W. NASICON-structured materials for energy storage. Adv Mater 2017;29:1601925.
60. Guan J, Huang Q, Shao L, et al. Polyanion-type Na3V2(PO4)2F3@rGO with high-voltage and ultralong-life for aqueous zinc ion batteries. Small 2023;19:e2207148.
61. Wu Z, Lu C, Ye F, et al. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv Funct Mater 2021;31:2106816.
62. Zheng J, Xu T, Xia G, Cui WG, Yang Y, Yu X. Water-stabilized vanadyl phosphate monohydrate ultrathin nanosheets toward high voltage Al-ion batteries. Small 2023;19:e2207619.
63. VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 2017;11:11135-44.
64. Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano 2019;13:8491-4.
65. Qureshi A, Abdelhay AH, Zaidi SA, et al. Emerging trends in niobium, vanadium, and molybdenum based MXenes applications. Crit Rev Solid State Mater Sci 2024;49:141-62.
66. Liu Y, Jiang Y, Hu Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater 2021;31:2008033.
67. Guan J, Shao L, Yu L, et al. Two-dimensional Mg0.2V2O5·nH2O nanobelts derived from V4C3 MXenes for highly stable aqueous zinc ion batteries. Chem Eng J 2022;443:136502.
68. Zhu J, Zhang X, Gao H, et al. VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery. J Power Sources 2022;518:230731.
69. Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature 2000;407:724-7.
70. An Q, Li Y, Deog Yoo H, et al. Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy 2015;18:265-72.
71. Wang J, Tan S, Zhang G, et al. Fast and stable Mg2+ intercalation in a high voltage NaV2O2(PO4)2F/rGO cathode material for magnesium-ion batteries. Sci China Mater 2020;63:1651-62.
72. Dong H, Liang Y, Tutusaus O, et al. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019;3:782-93.
73. Zhao Y, Wang D, Yang D, et al. Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14Cl/THF electrolyte. Energy Storage Mater 2019;23:749-56.
74. Li Z, Ding S, Yin J, Zhang M, Sun C, Meng A. Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism. J Power Sources 2020;451:227815.
75. Wang Y, Liu Z, Wang C, et al. Highly branched VS4 Nanodendrites with 1D atomic-Chain structure as a promising cathode material for long-cycling magnesium batteries. Adv Mater 2018;30:e1802563.
76. Ding S, Dai X, Tian Y, et al. Synergy strategy of electrical conductivity enhancement and vacancy introduction for improving the performance of VS4 magnesium-ion battery cathode. ACS Appl Mater Interfaces 2021;13:54005-17.
77. Pei C, Yin Y, Sun R, et al. Interchain-expanded vanadium tetrasulfide with fast kinetics for rechargeable magnesium batteries. ACS Appl Mater Interfaces 2019;11:31954-61.
78. Xue X, Chen R, Yan C, et al. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv Energy Mater 2019;9:1900145.
79. Ding S, Dai X, Li Z, et al. PVP-induced synergistic engineering of interlayer, self-doping, active surface and vacancies in VS4 for enhancing magnesium ions storage and durability. Energy Storage Mater 2022;47:211-22.
80. Mukherjee A, Taragin S, Aviv H, Perelshtein I, Noked M. Rationally designed vanadium pentoxide as high capacity insertion material for Mg-ion. Adv Funct Mater 2020;30:2003518.
81. Zuo C, Xiao Y, Pan X, et al. Organic-inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem 2021;14:2093-9.
82. Joe YS, Kang MS, Jang G, et al. Intercalation of bilayered V2O5 by electronically coupled PEDOT for greatly improved kinetic performance of magnesium ion battery cathodes. Chem Eng J 2023;460:141706.
83. Wu D, Zhuang Y, Wang F, Yang Y, Zeng J, Zhao J. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Res 2023;16:4880-7.
84. Tang H, Xiong F, Jiang Y, et al. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 2019;58:347-54.
85. Rashad M, Zhang H, Asif M, Feng K, Li X, Zhang H. Low-cost room-temperature synthesis of NaV3O8·1.69H2O nanobelts for Mg batteries. ACS Appl Mater Interfaces 2018;10:4757-66.
86. Wang X, Zhang X, Zhao G, et al. Ether-water hybrid electrolyte contributing to excellent Mg ion storage in layered sodium vanadate. ACS Nano 2022;16:6093-102.
87. Tang B, Fang G, Zhou J, et al. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018;51:579-87.
88. Li C, Wu W, Liu Y, et al. Facilitating Mg2+ diffusion in high potential LixV2(PO4)3 cathode material with a co-insertion strategy for rechargeable Mg-ion batteries. J Power Sources 2022;520:230853.
89. Zhang X, Xu X, Song B, et al. Towards a stable layered vanadium oxide cathode for high-capacity calcium batteries. Small 2022;18:e2107174.
90. Jeon B, Kwak HH, Hong S. Bilayered Ca0.28V2O5·H2O: high-capacity cathode material for rechargeable Ca-ion batteries and its charge storage mechanism. Chem Mater 2022;34:1491-8.
91. Purbarani ME, Hyoung J, Hong S. Crystal-water-free potassium vanadium bronze (K0.5V2O5) as a cathode material for Ca-ion batteries. ACS Appl Energy Mater 2021;4:7487-91.
92. Adil M, Sarkar A, Sau S, Muthuraj D, Mitra S. Non-aqueous rechargeable calcium-ion batteries based on high voltage zirconium-doped ammonium vanadium oxide cathode. J Power Sources 2022;541:231669.
93. Wang Y, Cai J, Han T, et al. In-situ growing polyaniline nano-spine array on FeVO4 nanobelts as high-performance rechargeable aluminum-ion battery cathode. Appl Surf Sci 2022;591:153157.
94. Singh S, Bairagi PK, Verma N. Candle soot-derived carbon nanoparticles: an inexpensive and efficient electrode for microbial fuel cells. Electrochim Acta 2018;264:119-27.
95. Wang H, Xu Q. Materials design for rechargeable metal-air batteries. Matter 2019;1:565-95.
96. Ju S, Ye J, Meng Y, Xia G, Yu X. Pre-lithiated Li2V6O13 cathode enables high-energy aluminum-ion battery. Adv Energy Mater 2022;12:2201653.
97. Xing L, Owusu KA, Liu X, et al. Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 2021;79:105384.
98. Han X, Wu F, Zhao R, Bai Y, Wu C. Tremella-like vanadium tetrasulfide as a high-performance cathode material for rechargeable aluminum batteries. ACS Appl Mater Interfaces 2023;15:6888-901.
99. Li Q, Rui X, Chen D, et al. A high-capacity ammonium vanadate cathode for zinc-ion battery. Nanomicro Lett 2020;12:67.
100. Tan H, Chen D, Liu W, et al. Free-standing hydrated sodium vanadate papers for high-stability zinc-ion batteries. Batteries Supercaps 2020;3:254-60.
101. Mei Y, Liu Y, Xu W, Zhang M, Dong Y, Qiu J. Suppressing vanadium dissolution in 2D V2O5/MXene heterostructures via organic/aqueous hybrid electrolyte for stable zinc ion batteries. Chem Eng J 2023;452:139574.
102. Yagi S, Ichitsubo T, Shirai Y, et al. A concept of dual-salt polyvalent-metal storage battery. J Mater Chem A 2014;2:1144-9.
103. Sun R, Pei C, Sheng J, et al. High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Mater 2018;12:61-8.
104. Pei C, Xiong F, Sheng J, et al. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl Mater Interfaces 2017;9:17060-6.
105. Hu X, Peng J, Xu F, Ding M. Rechargeable Mg2+/Li+, Mg2+/Na+, and Mg2+/K+ hybrid batteries based on layered VS2. ACS Appl Mater Interfaces 2021;13:57252-63.
106. Rashad M, Li X, Zhang H. Magnesium/lithium-ion hybrid battery with high reversibility by employing NaV3O8·1.69H2O nanobelts as a positive electrode. ACS Appl Mater Interfaces 2018;10:21313-20.
107. Zhao S, Li C, Zhang X, et al. An advanced Ca/Zn hybrid battery enabled by the dendrite-free zinc anode and a reversible calcification/decalcification NASICON cathode. Sci Bull 2023;68:56-64.
108. Liang Z, Tian F, Yang G, Wang C. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat Commun 2023;14:3591.
109. Zhang H, Cao D, Bai X. High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode. J Power Sources 2019;444:227299.
110. Zhao Y, Chen Z, Mo F, et al. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv Sci 2020;8:2002590.
111. Yang G, Xu X, Qu G, et al. An aqueous magnesium-ion battery working at -50 °C enabled by modulating electrolyte structure. Chem Eng J 2023;455:140806.
112. Zhang H, Ye K, Zhu K, et al. High-energy-density aqueous magnesium-ion battery based on a carbon-coated FeVO4 anode and a Mg-OMS-1 cathode. Chemistry 2017;23:17118-26.
113. Liu L, Wu YC, Rozier P, Taberna PL, Simon P. Ultrafast synthesis of calcium vanadate for superior aqueous calcium-ion battery. Research 2019;2019:6585686.
114. Dong L, Xu R, Wang P, et al. Layered potassium vanadate K2V6O16 nanowires: a stable and high capacity cathode material for calcium-ion batteries. J Power Sources 2020;479:228793.
115. Soundharrajan V, Nithiananth S, Lee J, Kim JH, Hwang J, Kim J. LiV3O8 as an intercalation-type cathode for aqueous aluminum-ion batteries. J Mater Chem A 2022;10:18162-9.
116. Kumar S, Satish R, Verma V, et al. Investigating FeVO4 as a cathode material for aqueous aluminum-ion battery. J Power Sources 2019;426:151-61.
117. Pang Q, Yang S, Yu X, et al. Realizing reversible storage of trivalent aluminum ions using VOPO4·2H2O nanosheets as cathode material in aqueous aluminum metal batteries. J Alloys Compd 2021;885:161008.
118. Wang P, Chen Z, Wang H, et al. A high-performance flexible aqueous Al ion rechargeable battery with long cycle life. Energy Storage Mater 2020;25:426-35.
119. Yang Q, Qu X, Cui H, et al. Rechargeable aqueous Mn-metal battery enabled by inorganic-organic interfaces. Angew Chem Int Ed 2022;61:e202206471.
120. Nimkar A, Chae MS, Wee S, et al. What about manganese? ACS Energy Lett 2022;7:4161-7.
121. Bi S, Wang S, Yue F, Tie Z, Niu Z. A rechargeable aqueous manganese-ion battery based on intercalation chemistry. Nat Commun 2021;12:6991.
122. Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule 2021;5:2845-903.
123. Guo J, Ming J, Lei Y, et al. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett 2019;4:2776-81.
124. Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 2017;8:405.
125. Zhang W, Dai Y, Chen R, et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew Chem Int Ed 2023;62:e202212695.
126. He P, Yan M, Zhang G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 2017;7:1601920.
127. Jiao T, Yang Q, Wu S, et al. Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. J Mater Chem A 2019;7:16330-8.
128. Yu D, Wei Z, Zhang X, et al. Boosting Zn2+ and NH4+ storage in aqueous media via in-situ electrochemical induced VS2/VOx heterostructures. Adv Funct Mater 2021;31:2008743.
129. Liu J, Peng W, Li Y, Zhang F, Fan X. A VS2@N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. J Mater Chem C 2021;9:6308-15.
130. Gao S, Ju P, Liu Z, et al. Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. J Energy Chem 2022;69:356-62.
131. Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A 2018;6:23757-65.
132. Yoo G, Koo B, An G. Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem Eng J 2022;434:134738.
133. Yan M, He P, Chen Y, et al. Water-Lubricated Intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 2018;30:1703725.
134. Li Y, Huang Z, Kalambate PK, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019;60:752-9.
135. Wei T, Li Q, Yang G, Wang C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim Acta 2018;287:60-7.
136. Yang G, Wei T, Wang C. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Interfaces 2018;10:35079-89.
137. Jiang H, Gong W, Zhang Y, et al. Quench-tailored Al-doped V2O5 nanomaterials for efficient aqueous zinc-ion batteries. J Energy Chem 2022;70:52-8.
138. Zhao Y, Han C, Yang J, et al. Stable alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett 2015;15:2180-5.
139. Wang X, Zhang Z, Huang M, Feng J, Xiong S, Xi B. In situ electrochemically activated vanadium oxide cathode for advanced aqueous Zn-ion batteries. Nano Lett 2022;22:119-27.
140. Zhu K, Wei S, Shou H, et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat Commun 2021;12:6878.
141. Cao Z, Chu H, Zhang H, et al. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties. J Mater Chem A 2019;7:25262-7.
142. Cao H, Zheng Z, Norby P, Xiao X, Mossin S. Electrochemically induced phase transition in V3O7·H2O nanobelts/reduced graphene oxide composites for aqueous zinc-ion batteries. Small 2021;17:2100558.
143. Ding Y, Peng Y, Chen S, et al. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2019;11:44109-17.
144. He P, Liu J, Zhao X, Ding Z, Gao P, Fan L. A three-dimensional interconnected V6O13 nest with a V5+-rich state for ultrahigh Zn ion storage. J Mater Chem A 2020;8:10370-6.
145. Shi W, Yin B, Yang Y, et al. Unravelling V6O13 diffusion pathways via CO2 modification for high-performance zinc ion battery cathode. ACS Nano 2021;15:1273-81.
146. Chen L, Ruan Y, Zhang G, et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem Mater 2019;31:699-706.
147. Zhu K, Wu T, Huang K. A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries. Energy Storage Mater 2021;38:473-81.
148. Wei T, Li Q, Yang G, Wang C. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J Mater Chem A 2018;6:8006-12.
149. Tang Z, Zou R, Chen X, Li Z, Lei G. Solvothermal synthesis of VO2 and in situ electrochemical transformation of Zn2V2O7 as cathode for long-life aqueous zinc-ion batteries. J Power Sources 2023;569:233006.
150. Deng S, Li H, Chen B, et al. High performance of Mn-doped VO2 cathode for aqueous zinc-ion batteries: an insight into Zn2+ storage mechanism. Chem Eng J 2023;452:139115.
151. Ma L, Li N, Long C, et al. Achieving both high voltage and high capacity in aqueous zinc-ion battery for record high energy density. Adv Funct Mater 2019;29:1906142.
152. Chae MS, Attias R, Dlugatch B, Gofer Y, Aurbach D. Multifold electrochemical protons and zinc ion storage behavior in copper vanadate cathodes. ACS Appl Energy Mater 2021;4:10197-202.
153. Alfaruqi MH, Mathew V, Song J, et al. Electrochemical zinc intercalation in lithium vanadium oxide: a high-capacity zinc-ion battery cathode. Chem Mater 2017;29:1684-94.
154. Li Q, Liu Y, Ma K, Yang G, Wang C. In situ Ag nanoparticles reinforced pseudo-Zn-air reaction boosting Ag2V4O11 as high-performance cathode material for aqueous zinc-ion batteries. Small Methods 2019;3:1900637.
155. Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 2020;14:6752-60.
156. Zhu K, Wu T, Huang K. NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: the roles of pre-inserted dual-cations and structural water in V3O8 layer. Adv Energy Mater 2019;9:1901968.
157. Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater 2018;30:1705580.
158. Peng Z, Wei Q, Tan S, et al. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem Commun 2018;54:4041-4.
159. Wang X, Xi B, Feng Z, et al. Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J Mater Chem A 2019;7:19130-9.
160. Jiang Y, Wu Z, Ye F, et al. Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nano- ribbons for binder-free zinc-ion batteries. Energy Storage Mater 2021;42:286-94.
161. Li S, Yu D, Liu J, et al. Quantitative regulation of interlayer space of NH4V4O10 for fast and durable Zn2+ and NH4+ storage. Adv Sci 2023;10:e2206836.
162. Shi HY, Song Y, Qin Z, et al. Inhibiting VOPO4·xH2O decomposition and dissolution in rechargeable aqueous zinc batteries to promote voltage and capacity stabilities. Angew Chem Int Ed 2019;58:16057-61.
163. Zhang W, Dong M, Jiang K, et al. Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat Commun 2022;13:5348.
164. Li C, Kingsbury R, Zhou L, Shyamsunder A, Persson KA, Nazar LF. Tuning the solvation structure in aqueous zinc batteries to maximize Zn-ion intercalation and optimize dendrite-free zinc plating. ACS Energy Lett 2022;7:533-40.
165. Hu L, Wu Z, Lu C, Ye F, Liu Q, Sun Z. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ Sci 2021;14:4095-106.
166. Hu P, Zhu T, Wang X, et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019;58:492-8.
167. Pang Q, Sun C, Yu Y, et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater 2018;8:1800144.
168. Chen X, Kong Q, Wu X, et al. V2O3@C optimized by carbon regulation strategy for ultra long-life aqueous zinc-ion batteries. Chem Eng J 2023;451:138765.
169. Ren J, Hong P, Ran Y, Chen Y, Xiao X, Wang Y. Binder-free three-dimensional interconnected CuV2O5·nH2O nests as cathodes for high-loading aqueous zinc-ion batteries. Inorg Chem Front 2022;9:792-804.
170. Li X, Li M, Yang Q, et al. In situ electrochemical synthesis of MXenes without acid/alkali usage in/for an aqueous zinc ion battery. Adv Energy Mater 2020;10:2001791.
171. Zhang X, Xue F, Sun X, et al. High-capacity zinc vanadium oxides with long-term cyclability enabled by in-situ electrochemical oxidation as zinc-ion battery cathode. Chem Eng J 2022;445:136714.
172. Du Y, Wang X, Zhang Y, et al. High mass loading CaV4O9 microflowers with amorphous phase transformation as cathode for aqueous zinc-ion battery. Chem Eng J 2022;434:134642.
173. Shan L, Zhou J, Han M, et al. Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. J Mater Chem A 2019;7:7355-9.
174. Tang W, Lan B, Tang C, et al. Urchin-like spinel MgV2O4 as a cathode material for aqueous zinc-ion batteries. ACS Sustain Chem Eng 2020;8:3681-8.
175. Salanne M, Rotenberg B, Naoi K, et al. Efficient storage mechanisms for building better supercapacitors. Nat Energy 2016;1:16070.
176. Guo J, Li L, Luo J, et al. Polypyrrole-assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc-ion battery. Adv Energy Mater 2022;12:2201481.
177. Lee Y, Yoo G, Jo Y, An H, Koo B, An G. Interfacial electrochemical media-engineered tunable vanadium zinc hydrate oxygen defect for enhancing the redox reaction of zinc-ion hybrid supercapacitors. Adv Energy Mater 2023;13:2300630.
178. Fu Q, Wu X, Luo X, et al. High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization. Adv Funct Mater 2022;32:2110674.
179. Wu D, Zeng J, Hua H, Wu J, Yang Y, Zhao J. NaV6O15: a promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance. Nano Res 2020;13:335-43.
180. Tang H, Chao F, Chen H, et al. Water-lubricated aluminum vanadate for enhanced rechargeable magnesium ion storage. Small 2022;18:e2203525.
181. Deng X, Xu Y, An Q, et al. Manganese ion pre-intercalated hydrated vanadium oxide as a high-performance cathode for magnesium ion batteries. J Mater Chem A 2019;7:10644-50.
182. Xu X, Duan M, Yue Y, et al. Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett 2019;4:1328-35.
183. Chae MS, Setiawan D, Kim HJ, Hong ST. Layered iron vanadate as a high-capacity cathode material for nonaqueous calcium-ion batteries. Batteries 2021;7:54.
184. Gao W, Michalička J, Pumera M. Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries. Small 2022;18:e2105572.
185. Li Z, Ren Y, Mo L, et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020;14:5581-9.
186. Chen H, Chen L, Meng J, et al. Synergistic effects in V3O7/V2O5 composite material for high capacity and long cycling life aqueous rechargeable zinc ion batteries. J Power Sources 2020;474:228569.
187. He D, Peng Y, Ding Y, et al. Suppressing the skeleton decomposition in Ti-doped NH4V4O10 for durable aqueous zinc ion battery. J Power Sources 2021;484:229284.
188. He P, Yan M, Liao X, Luo Y, Mai L, Nan C. Reversible V3+/V5+ double redox in lithium vanadium oxide cathode for zinc storage. Energy Storage Mater 2020;29:113-20.
189. He P, Zhang G, Liao X, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater 2018;8:1702463.
190. Yi H, Zuo C, Ren H, et al. Structure evolution and energy storage mechanism of Zn3V3O8 spinel in aqueous zinc batteries. Nanoscale 2021;13:14408-16.
191. Li W, Wang K, Cheng S, Jiang K. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater 2018;15:14-21.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.