REFERENCES
1. Liu J, Zhang YH, Zhou JQ, et al. Advances and prospects in improving the utilization efficiency of lithium for high energy density lithium batteries. Adv Funct Mater 2023;33:2302055.
2. Sandstrom SK, Ji X. Reversible halogen cathodes for high energy lithium batteries. Joule 2023;7:13-4.
3. Sang J, Tang B, Pan K, He YB, Zhou Z. Current status and enhancement strategies for all-solid-state lithium batteries. Acc Mater Res 2023;4:472-83.
4. An W, Gao B, Mei SX, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun 2019;10:1447.
5. Zhang QB, Chen HX, Luo LL, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 2018;11:669-81.
6. Ma QY, Zheng Y, Luo D, et al. 2D materials for all-solid-state lithium batteries. Adv Mater 2022;34:e2108079.
7. Sun CW, Liu J, Gong YD, Wilkinson DP, Zhang JJ. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017;33:363-86.
8. Xiao YH, Wang Y, Bo SH, Kim JC, Miara LJ, Ceder G. Understanding interface stability in solid-state batteries. Nat Rev Mater 2020;5:105-26.
9. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 2020;5:229-52.
10. Xu J, Liu L, Yao N, Wu F, Li H, Chen LQ. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Mater Today Nano 2019;8:100048.
11. Lau J, Deblock RH, Butts DM, Ashby DS, Choi CS, Dunn BS. Sulfide solid electrolytes for lithium battery applications. Adv Energy Mater 2018;8:1800933.
12. Wu JH, Liu SF, Han FD, Yao XY, Wang CS. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater 2021;33:e2000751.
13. Wang S, Fang RY, Li YT, et al. Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. J Materiomics 2021;7:209-18.
14. Culver SP, Koerver R, Zeier WG, Janek J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv Energy Mater 2019;9:1900626.
15. Lian PJ, Zhao BS, Zhang LQ, Xu N, Wu MT, Gao XF. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J Mater Chem A 2019;7:20540-57.
16. Zhu YZ, Mo YF. Materials design principles for air-stable lithium/sodium solid electrolytes. Angew Chem Int Ed 2020;59:17472-6.
17. Ohtomo T, Hayashi A, Tatsumisago M, Kawamoto K. All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J Solid State Electrochem 2013;17:2551-7.
18. Zhao FP, Liang JW, Yu C, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv Energy Mater 2020;10:1903422.
19. Wang YQ, Lü XJ, Zheng C, et al. Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew Chem Int Ed 2019;58:7673-7.
20. Zhang ZR, Zhang JX, Sun YL, et al. Li4-xSbSn1-xS4 solid solutions for air-stable solid electrolytes. J Energy Chem 2020;41:171-6.
21. Tufail MK, Zhou L, Ahmad N, et al. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem Eng J 2021;407:127149.
22. Zhao BS, Wang L, Chen P, et al. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces 2021;13:34477-85.
23. Ni Y, Huang C, Liu H, Liang YH, Fan LZ. A high air-stability and Li-metal-compatible Li3+2xP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li-metal batteries. Adv Funct Mater 2022;32:2205998.
24. Rajagopal R, Subramanian Y, Jung YJ, Kang S, Ryu KS. Preparation of metal-oxide-doped Li7P2S8Br0.25I0.75 solid electrolytes for all-solid-state lithium batteries. ACS Appl Mater Interfaces 2023;15:21016-26.
25. Zhang N, Wang L, Diao QY, et al. Mechanistic insight into La2O3 dopants with high chemical stability on Li3PS4 sulfide electrolyte for lithium metal batteries. J Electrochem Soc 2022;169:020544.
26. Liu GZ, Xie DJ, Wang XL, et al. High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Stor Mater 2019;17:266-74.
27. Ahmad N, Zhou L, Faheem M, et al. Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces 2020;12:21548-58.
28. Xu RC, Xia XH, Li SH, Zhang SZ, Wang XL, Tu JP. All-solid-state lithium-sulfur batteries based on a newly designed
29. Wang ZX, Jiang Y, Wu J, et al. Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chem Eng J 2020;393:124706.
30. Dietrich C, Weber DA, Sedlmaier SJ, et al. Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. J Mater Chem A 2017;5:18111-9.
31. Wang CH, Adair KR, Liang JW, et al. Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater 2019;29:1900392.
32. Wang ZX, Jiang Y, Wu J, et al. Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface. Nano Energy 2021;84:105906.
34. Liu H, Zhu QS, Liang YH, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. Chem Eng J 2023;462:142183.
35. Busche MR, Weber DA, Schneider Y, et al. In situ monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup. Chem Mater 2016;28:6152-65.
36. Rangasamy E, Sahu G, Keum JK, Rondinone AJ, Dudney NJ, Liang C. A high conductivity oxide-sulfide composite lithium superionic conductor. J Mater Chem A 2014;2:4111-6.
37. Mishra GK, Gautam M, Bhawana K, Chakrabarty N, Mitra S. Germanium-free dense lithium superionic conductor and interface re-engineering for all-solid-state lithium batteries against high-voltage cathode. ACS Appl Mater Interfaces 2023;15:10629-41.
38. Wenzel S, Randau S, Leichtweiß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 2016;28:2400-7.
39. Zheng BZ, Liu XS, Zhu JP, et al. Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy 2020;67:104252.
40. Han FD, Zhu YZ, He XF, Mo YF, Wang CS. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016;6:1501590.
41. Han FD, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019;4:187-96.
42. Mo FJ, Ruan JF, Sun SX, et al. Inside or outside: origin of lithium dendrite formation of all solid-state electrolytes. Adv Energy Mater 2019;9:1902123.
43. Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources 2017;343:119-26.
44. Jiang Y, Wang ZX, Xu CX, et al. Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating. Energy Stor Mater 2020;28:17-26.
45. Su YB, Ye LH, Fitzhugh W, et al. A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ Sci 2020;13:908-16.
46. He XZ, Ji X, Zhang B, et al. Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett 2022;7:131-9.
47. Hou WH, Zhou P, Gu HH, et al. Fluorinated carbamate-based electrolyte enables anion-dominated solid electrolyte interphase for highly reversible Li metal anode. ACS Nano 2023;17:17527-35.