REFERENCES

1. Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2019;2:387-99.

2. Takata T, Domen K. Particulate photocatalysts for water splitting: recent advances and future prospects. ACS Energy Lett 2019;4:542-9.

3. Kim JH, Hansora D, Sharma P, Jang JW, Lee JS. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev 2019;48:1908-71.

4. Yang W, Prabhakar RR, Tan J, Tilley SD, Moon J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem Soc Rev 2019;48:4979-5015.

5. Guo J, Zhang YC, Zavabeti A, et al. Hydrogen production from the air. Nat Commun 2022;13:5046.

6. Kumari S, Turner White R, Kumar B, Spurgeon JM. Solar hydrogen production from seawater vapor electrolysis. Energy Environ Sci 2016;9:1725-33.

7. Lewis NS. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 2016;11:1010-9.

8. Chabi S, Papadantonakis KM, Lewis NS, Freund MS. Membranes for artificial photosynthesis. Energy Environ Sci 2017;10:1320-38.

9. Suguro T, Kishimoto F, Takanabe K. Photocatalytic hydrogen production under water vapor feeding - a minireview. Energy Fuels 2022;36:8978-94.

10. Dionigi F, Vesborg PCK, Pedersen T, et al. Gas phase photocatalytic water splitting with Rh2-yCryO3/GaN:ZnO in μ-reactors. Energy Environ Sci 2011;4:2937-42.

11. Daeneke T, Dahr N, Atkin P, et al. Surface water dependent properties of sulfur-rich molybdenum sulfides: electrolyteless gas phase water splitting. ACS Nano 2017;11:6782-94.

12. Suguro T, Kishimoto F, Kariya N, et al. A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting. Nat Commun 2022;13:5698.

13. Amano F, Mukohara H, Sato H, Tateishi C, Sato H, Sugimoto T. Vapor-fed photoelectrolysis of water at 0.3 V using gas-diffusion photoanodes of SrTiO3 layers. Sustain Energy Fuels 2020;4:1443-53.

14. Spurgeon JM, Lewis NS. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ Sci 2011;4:2993-8.

15. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.

16. Ichikawa S, Doi R. Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catal Today 1996;27:271-7.

17. Seger B, Kamat PV. Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 2009;113:18946-52.

18. Li Y, Yu H, Song W, Li G, Yi B, Shao Z. A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 2011;36:14374-80.

19. Rongé J, Nijs D, Kerkhofs S, Masschaele K, Martens JA. Chronoamperometric study of membrane electrode assembly operation in continuous flow photoelectrochemical water splitting. Phys Chem Chem Phys 2013;15:9315-25.

20. Xu K, Chatzitakis A, Norby T. Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting. Photochem Photobiol Sci 2017;16:10-6.

21. Georgieva J, Armyanov S, Poulios I, Sotiropoulos S. An all-solid photoelectrochemical cell for the photooxidation of organic vapours under ultraviolet and visible light illumination. Electrochem Commun 2009;11:1643-6.

22. Iwu KO, Galeckas A, Kuznetsov AY, Norby T. Solid-state photoelectrochemical H2 generation with gaseous reactants. Electrochim Acta 2013;97:320-5.

23. Rongé J, Deng S, Pulinthanathu Sree S, et al. Air-based photoelectrochemical cell capturing water molecules from ambient air for hydrogen production. RSC Adv 2014;4:29286-90.

24. Amano F, Shintani A, Tsurui K, Mukohara H, Ohno T, Takenaka S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett 2019;4:502-7.

25. Amano F, Shintani A, Mukohara H, Hwang YM, Tsurui K. Photoelectrochemical gas-electrolyte-solid phase boundary for hydrogen production from water vapor. Front Chem 2018;6:598.

26. Amano F, Mukohara H, Shintani A, Tsurui K. Solid polymer electrolyte-coated macroporous titania nanotube photoelectrode for gas-phase water splitting. ChemSusChem 2019;12:1925-30.

27. Amano F, Mukohara H, Sato H, Ohno T. Photoelectrochemical water vapor splitting using an ionomer-coated rutile TiO2 thin layer on titanium microfiber felt as an oxygen-evolving photoanode. Sustain Energy Fuels 2019;3:2048-55.

28. Ta CXM, Akamoto C, Furusho Y, Amano F. A macroporous-structured WO3/Mo-doped BiVO4 photoanode for vapor-fed water splitting under visible light irradiation. ACS Sustain Chem Eng 2020;8:9456-63.

29. Amano F, Shintani A, Tsurui K, Hwang YM. Fabrication of tungsten trioxide photoanode with titanium microfibers as a three dimensional conductive back contact. Mater Lett 2017;199:68-71.

30. Amano F, Koga S. Electrochemical impedance spectroscopy of WO3 photoanodes on different conductive substrates: the interfacial charge transport between semiconductor particles and Ti surface. J Electroanal Chem 2022;921:116685.

31. Homura H, Ohtani B, Abe R. Facile fabrication of photoanodes of tungsten(VI) oxide on carbon microfiber felts for efficient water oxidation under visible light. Chem Lett 2014;43:1195-7.

32. Homura H, Tomita O, Higashi M, Abe R. Application of carbon microfiber felts as three-dimensional conductive substrate for efficient photoanodes of tungsten(VI) oxide. J Photochem Photobiol A 2019;375:54-63.

33. Stoll T, Zafeiropoulos G, Tsampas MN. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants. Int J Hydrog Energy 2016;41:17807-17.

34. Makarova MV, Amano F, Nomura S, et al. Direct electrochemical visualization of the orthogonal charge separation in anatase nanotube photoanodes for water splitting. ACS Catal 2022;12:1201-8.

35. Zafeiropoulos G, Johnson H, Kinge S, van de Sanden MCM, Tsampas MN. Solar hydrogen generation from ambient humidity using functionalized porous photoanodes. ACS Appl Mater Interfaces 2019;11:41267-80.

36. Zafeiropoulos G, Stoll T, Dogan I, Mamlouk M, van de Sanden M, Tsampas M. Porous titania photoelectrodes built on a Ti-web of microfibers for polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell applications. Sol Energy Mater Sol Cells 2018;180:184-95.

37. Stoll T, Zafeiropoulos G, Dogan I, et al. Visible-light-promoted gas-phase water splitting using porous WO3/BiVO4 photoanodes. Electrochem Commun 2017;82:47-51.

38. Xu K, Chatzitakis A, Vøllestad E, Ruan Q, Tang J, Norby T. Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. Int J Hydrog Energy 2019;44:587-93.

39. Kang X, Chaperman L, Galeckas A, et al. Water vapor photoelectrolysis in a solid-state photoelectrochemical cell with TiO2 nanotubes loaded with CdS and CdSe nanoparticles. ACS Appl Mater Interfaces 2021;13:46875-85.

40. Ta CXM, Furusho Y, Amano F. Photoelectrochemical stability of WO3/Mo-doped BiVO4 heterojunctions on different conductive substrates in acidic and neutral media. Appl Surf Sci 2021;548:149251.

41. Zafeiropoulos G, Varadhan P, Johnson H, et al. Rational design of photoelectrodes for the fully integrated polymer electrode membrane-photoelectrochemical water-splitting system: a case study of bismuth vanadate. ACS Appl Energy Mater 2021;4:9600-10.

42. Amano F, Shintani A, Sakakura T, Takatsuji Y, Haruyama T. Photoelectrochemical C-H activation of methane to methyl radical at room temperature. Catal Sci Technol 2023;13:4640-5.

43. Amano F, Uchiyama A, Furusho Y, Shintani A. Effect of conductive substrate on the photoelectrochemical properties of Cu2O film electrodes for methyl viologen reduction. J Photochem Photobiol A 2020;389:112254.

44. Caretti M, Mensi E, Kessler RA, et al. Transparent porous conductive substrates for gas-phase photoelectrochemical hydrogen production. Adv Mater 2023;35:e2208740.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/