REFERENCES
1. Manthiram A, Chung SH, Zu C. Lithium-sulfur batteries: progress and prospects. Adv Mater 2015;27:1980-2006.
2. Zheng ZJ, Ye H, Guo ZP. Recent progress in designing stable composite lithium anodes with improved wettability. Adv Sci 2020;7:2002212.
3. Zhao Y, Liu Z, Li Z, Peng Z, Yao X. Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio. Energy Mater 2022;2:200034.
4. Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat Energy 2022;7:312-9.
5. Yang CP, Yin YX, Ye H, Jiang KC, Zhang J, Guo YG. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl Mater Interfaces 2014;6:8789-95.
6. Ye Z, Jiang Y, Li L, Wu F, Chen R. A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries. Adv Mater 2020;32:e2002168.
7. Ren Y, Fan JS, Fu YZ. Recent strategies for improving the performances of rechargeable lithium batteries with sulfur- and oxygen-based conversion cathodes. Energy Mater 2023;3:300015.
8. Wang Z, Li Y, Ji H, Zhou J, Qian T, Yan C. Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries. Adv Mater 2022;34:e2203699.
9. Ren W, Ma W, Zhang S, Tang B. Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Stor Mater 2019;23:707-32.
10. Guo W, Zhang W, Si Y, Wang D, Fu Y, Manthiram A. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat Commun 2021;12:3031.
11. Sun Z, Zhang J, Yin L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat Commun 2017;8:14627.
12. Li J, Chen C, Chen Y, et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv Energy Mater 2019;9:1901935.
13. Li Z, Xiao Z, Li P, Meng X, Wang R. Enhanced chemisorption and catalytic effects toward polysulfides by modulating hollow nanoarchitectures for long-life lithium-sulfur batteries. Small 2020;16:e1906114.
14. Huang Y, Lin L, Zhang C, et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv Sci 2022;9:e2106004.
15. Peng HJ, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew Chem Int Ed 2016;55:12990-5.
16. Du Z, Guo C, Wang L, et al. Atom-thick interlayer made of CVD-grown graphene film on separator for advanced lithium-sulfur batteries. ACS Appl Mater Interfaces 2017;9:43696-703.
17. Boyjoo Y, Shi H, Tian Q, et al. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ Sci 2021;14:540-75.
18. Wu F, Zhao S, Chen L, et al. Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Stor Mater 2018;14:383-91.
19. Hua W, Li H, Pei C, et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv Mater 2021;33:e2101006.
20. Zhang M, Chen W, Xue L, et al. Adsorption-catalysis design in the lithium-sulfur battery. Adv Energy Mater 2020;10:1903008.
21. Yao W, Tian C, Yang C, et al. P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv Mater 2022;34:e2106370.
22. Liu P, Qu L, Tian X, et al. Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl Energy Mater 2020;3:2708-18.
23. Shi Z, Ding Y, Zhang Q, Sun J. Electrocatalyst modulation toward bidirectional sulfur redox in Li-S batteries: from strategic probing to mechanistic understanding. Adv Energy Mater 2022;12:2201056.
24. Liang Z, Shen J, Xu X, et al. Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv Mater 2022;34:e2200102.
25. Zhang X, Yang T, Zhang Y, et al. Single zinc atom aggregates: synergetic interaction to boost fast polysulfide conversion in lithium-sulfur batteries. Adv Mater 2023;35:e2208470.
26. He J, Bhargav A, Yaghoobnejad Asl H, Chen Y, Manthiram A. 1T′-ReS2 nanosheets in situ grown on carbon nanotubes as a highly efficient polysulfide electrocatalyst for stable Li-S batteries. Adv Energy Mater 2020;10:2001017.
27. Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA 2017;114:840-5.
28. Yang D, Liang Z, Tang P, et al. A high conductivity 1D π-d Conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv Mater 2022;34:e2108835.
29. Ding Y, Cheng Q, Wu J, et al. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries. Adv Mater 2022;34:e2202256.
30. Xiao Y, Xiang Y, Guo S, et al. An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries. Energy Stor Mater 2022;51:882-9.
31. Wang J, Ma Q, Sun S, et al. Highly aligned lithiophilic electrospun nanofiber membrane for the multiscale suppression of Li dendrite growth. eScience 2022;2:655-65.
32. Shi H, Qin J, Lu P, et al. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv Funct Mater 2021;31:2102314.
33. Fujita T, Guan P, McKenna K, et al. Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 2012;11:775-80.
34. Zhang C, Cui L, Abdolhosseinzadeh S, Heier J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2020;2:613-38.
35. Li P, Lv H, Li Z, et al. The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries. Adv Mater 2021;33:e2007803.
36. Lee DK, Chae Y, Yun H, Ahn CW, Lee JW. CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 2020;14:9744-54.
37. Lei T, Chen W, Lv W, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018;2:2091-104.
38. Gu S, Jiang H, Li X, et al. Dispersing single-layered Ti3C2Tx nanosheets in hierarchically-porous membrane for high-efficiency Li+ transporting and polysulfide anchoring in Li-S batteries. Energy Stor Mater 2022;53:32-41.
39. Zhang Y, Ma C, He W, et al. MXene and MXene-based materials for lithium-sulfur batteries. Prog Nat Sci Mater Int 2021;31:501-13.
40. Liu YH, Wang CY, Yang SL, Cao FF, Ye H. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. J Energy Chem 2022;66:429-39.
41. Liu C, Zhang H, Li R, et al. Laser triggered exothermic chemical reaction in Au nanoparticle@Ti3C2 MXene membrane: a route toward efficient light to high-temperature pulse conversion. Chem Eng J 2021;420:127672.
42. Xiong D, Huang S, Fang D, et al. Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries. Small 2021;17:e2007442.
43. Yang C, Li Y, Peng W, Zhang F, Fan X. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem Eng J 2022;427:131792.
44. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater 2015;27:5203-9.
45. Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 2011;6:232-6.
46. Yao WQ, Zheng WZ, Xu J, et al. ZnS-SnS@NC Heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021;15:7114-30.