REFERENCES

1. Li J, Fleetwood J, Hawley WB, Kays W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev 2022;122:903-56.

2. Zhang H, Wang L, He X. Trends in a study on thermal runaway mechanism of lithium-ion battery with LiNixMnyCo1-x-yO2 cathode materials. Battery Energy 2022;1:20210011.

3. Neumann J, Petranikova M, Meeus M, et al. Recycling of lithium-ion batteries - current state of the art, circular economy, and next generation recycling. Adv Energy Mater 2022;12:2102917.

4. Wang E, Xiao D, Wu T, et al. Stabilizing oxygen by high-valance element doping for high-performance Li-rich layered oxides. Battery Energy 2023;2:20220030.

5. Du K, Ang EH, Wu X, Liu Y. Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ Mater 2022;5:1012-36.

6. Gao C, Jiang Z, Qi S, et al. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv Mater 2022;34:e2110048.

7. Liu Y, Russo PA, Montoro LA, Pinna N. Recent developments in Nb-based oxides with crystallographic shear structures as anode materials for high-rate lithium-ion energy storage. Battery Energy 2023;2:20220037.

8. Lee MJ, Han J, Lee K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022;601:217-22.

9. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater 2017;29:201700519.

10. Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. J Am Chem Soc 2019;141:6338-44.

11. Zhang X, Tang Y, Zhang F, Lee CS. A novel aluminum-graphite dual-ion battery. Adv Energy Mater 2016;6:1502588.

12. Li Y, Wang B. High rate and ultralong cyclelife fiber-shaped sodium dual-ion battery based on bismuth anodes and polytriphenylamine cathodes. Battery Energy 2023;2:20220035.

13. Wei B, Hong Y, Tang W, et al. Design of bipolar polymer electrodes for symmetric Li-dual-ion batteries. Chem Eng J 2023;451:138773.

14. Das S, Manna SS, Pathak B. Recent advancements in devising computational strategies for dual-ion batteries. ChemSusChem 2023;16:e202201405.

15. Yu M, Liu H, Xiao K, Xie B, Han Z, Wang DW. Redox-mediated proton transport of two-dimensional polyaniline-based nanochannels for fast capacitive performance. Battery Energy 2022;1:20210004.

16. Feng Y, Chen S, Wang J, Lu B. Carbon foam with microporous structure for high performance symmetric potassium dual-ion capacitor. J Energy Chem 2020;43:129-38.

17. Rothermel S, Meister P, Schmuelling G, et al. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte. Energy Environ Sci 2014;7:3412-23.

18. Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 2021;50:2388-443.

19. Ou X, Li J, Tong X, Zhang G, Tang Y. Highly concentrated and nonflammable electrolyte for high energy density K-based dual-ion battery. ACS Appl Energy Mater 2020;3:10202-8.

20. Sheng M, Zhang F, Ji B, Tong X, Tang Y. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density. Adv Energy Mater 2017;7:1601963.

21. Bizuneh GG, Adam AMM, Ma J. Progress on carbon for electrochemical capacitors. Battery Energy 2023;2:20220021.

22. Salunkhe TT, Kadam AN, Kidanu WG, Lee S, Nguyen TL, Kim IT. A diffusion encouraged core-shell heterostructured Co3Sn2@SnO2 anode towards emerging dual ion batteries with high energy density. J Mater Chem A 2021;9:14991-5002.

23. Wu H, Li L, Yuan W. Nano-cubic α-Fe2O3 anode for Li+/Na+ based dual-ion full battery. Chem Eng J 2022;442:136259.

24. Wang X, Qi L, Wang H. Anatase TiO2 as a Na+-storage anode active material for dual-ion batteries. ACS Appl Mater Interfaces 2019;11:30453-9.

25. Kim J, Kim Y, Yoo J, Kwon G, Ko Y, Kang K. Organic batteries for a greener rechargeable world. Nat Rev Mater 2023;8:54-70.

26. Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 2011;4:2003-19.

27. Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sources 2021;482:228814.

28. Feng RZ, Zhang X, Murugesan V, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 2021;372:836-40.

29. Kim J, Kim H, Lee S, et al. A p-n fusion strategy to design bipolar organic materials for high-energy-density symmetric batteries. J Mater Chem A 2021;9:14485-94.

30. Lakraychi AE, Dolhem F, Vlad A, Becuwe M. Organic negative electrode materials for metal-ion and molecular-ion batteries: progress and challenges from a molecular engineering perspective. Adv Energy Mater 2021;11:2101562.

31. Nguyen TP, Easley AD, Kang NA, et al. Polypeptide organic radical batteries. Nature 2021;593:61-6.

32. Xie J, Lu YC. Towards practical organic batteries. Nat Mater 2021;20:581-3.

33. Zhu W, Huang Y, Jiang B, Xiao R. A metal-free ionic liquid dual-ion battery based on the reversible interaction of 1-butyl-1-methylpyrrolidinium cations with 1,4,5,8-naphthalenetetracarboxylic dianhydride. J Mol Liq 2021;339:116789.

34. Dong S, Li Z, Rodríguez-pérez IA, et al. A novel coronene//Na2Ti3O7 dual-ion battery. Nano Energy 2017;40:233-9.

35. Das S, Bhauriyal P, Pathak B. Polycyclic aromatic hydrocarbons as prospective cathodes for aluminum organic batteries. J Phys Chem C 2021;125:49-57.

36. Li Q, Wang H, Wang HG, Si Z, Li C, Bai J. A self-polymerized nitro-substituted conjugated carbonyl compound as high-performance cathode for lithium-organic batteries. ChemSusChem 2020;13:2449-56.

37. Kolek M, Otteny F, Schmidt P, et al. Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions. Energy Environ Sci 2017;10:2334-41.

38. Han C, Li H, Li Y, Zhu J, Zhi C. Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat Commun 2021;12:2400.

39. Häupler B, Wild A, Schubert US. Carbonyls: powerful organic materials for secondary batteries. Adv Energy Mater 2015;5:1402034.

40. Yang H, Lee J, Cheong JY, et al. Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy Environ Sci 2021;14:4228-67.

41. Shaplov AS, Marcilla R, Mecerreyes D. Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 2015;175:18-34.

42. Chen Y, Yu D, Liu Z, Xue Z, Mu T. Thermal, chemical, electrochemical, radiolytic and biological stability of ionic liquids and deep eutectic solvents. New J Chem 2022;46:17640-68.

43. Wang A, Yuan W, Fan J, Li L. A dual-graphite battery with pure 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide as the electrolyte. Energy Technol 2018;6:2172-8.

44. Song Z, Zhan H, Zhou Y. Polyimides: promising energy-storage materials. Angew Chem Int Ed 2010;49:8444-8.

45. Wu H, Wang K, Meng Y, Lu K, Wei Z. An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. J Mater Chem A 2013;1:6366-72.

46. Raj M, Mangalaraja RV, Lee G, Contreras D, Zaghib K, Reddy MV. Large π-conjugated condensed perylene-based aromatic polyimide as organic cathode for lithium-ion batteries. ACS Appl Energy Mater 2020;3:6511-24.

47. Jiang B, Kong T, Cai Z, Zhu W, Xiao R. In-situ modification of polyimide anode materials in dual-ion batteries. Electrochim Acta 2022;435:141402.

48. Ba Z, Wang Z, Luo M, et al. Benzoquinone-based polyimide derivatives as high-capacity and stable organic cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:807-17.

49. Kapaev RR, Scherbakov AG, Shestakov AF, Stevenson KJ, Troshin PA. m-phenylenediamine as a building block for polyimide battery cathode materials. ACS Appl Energy Mater 2021;4:4465-72.

50. Kim T, Park B, Lee KM, et al. Hydrothermal synthesis of composition- and morphology-tunable polyimide-based microparticles. ACS Macro Lett 2018;7:1480-5.

51. Ham Y, Fritz NJ, Hyun G, et al. 3D periodic polyimide nano-networks for ultrahigh-rate and sustainable energy storage. Energy Environ Sci 2021;14:5894-902.

52. Ryu J, Park B, Kang J, et al. Three-dimensional monolithic organic battery electrodes. ACS Nano 2019;13:14357-67.

53. Chen L, Li W, Wang Y, Wang C, Xia Y. Polyimide as anode electrode material for rechargeable sodium batteries. RSC Adv 2014;4:25369-73.

54. Geng J, Ni Y, Zhu Z, et al. Reversible metal and ligand redox chemistry in two-dimensional iron-organic framework for sustainable lithium-ion batteries. J Am Chem Soc 2023;145:1564-71.

55. Yu Z, Huang L, Sun Z, Cai F, Liang M, Luo Z. Designing anthraquinone-based conjugated microporous polymers with dual-ion storage behavior towards high-performance lithium-organic batteries. J Power Sources 2022;550:232149.

56. Xiu Y, Mauri A, Dinda S, et al. Anion storage chemistry of organic cathodes for high-energy and high-power density divalent metal batteries. Angew Chem Int Ed 2023;62:e202212339.

57. Zhang Y, Nie P, Xu C, et al. High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochim Acta 2018;268:512-9.

58. Wu H, Ye Z, Zhu J, Luo S, Li L, Yuan W. High discharge capacity and ultra-fast-charging sodium dual-ion battery based on insoluble organic polymer anode and concentrated electrolyte. ACS Appl Mater Interfaces 2022;14:49774-84.

59. Jiang H, Wei Z, Ma L, et al. An aqueous dual-ion battery cathode of Mn3O4 via reversible insertion of nitrate. Angew Chem Int Ed 2019;58:5286-91.

60. Zhang F, Wu M, Wang X, et al. Reversible multi-electron redox chemistry of organic salt as anode for high-performance Li-ion/dual-ion batteries. Chem Eng J 2023;457:141335.

61. Huang Z, Hou Y, Wang T, et al. Author correction: manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nat Commun 2021;12:4885.

62. Sun Z, Zhu K, Liu P, Chen X, Li H, Jiao L. Fluorination treatment of conjugated protonated polyanilines for high-performance sodium dual-ion batteries. Angew Chem Int Ed 2022;61:e202211866.

63. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl Sci Rev 2021;8:nwaa178.

64. Wu S, Zhang F, Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv Sci 2018;5:1701082.

65. Wei C, Gong D, Xie D, Tang Y. The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett 2021;6:4336-44.

66. He F, Zhou Y, Chen X, et al. A bipolar pyridine-functionalized porphyrin with hybrid charge-storage for dual-ion batteries. Chem Commun 2023;59:2787-90.

67. Yang K, Liu Q, Zheng Y, Yin H, Zhang S, Tang Y. Locally ordered graphitized carbon cathodes for high-capacity dual-ion batteries. Angew Chem Int Ed 2021;60:6326-32.

68. Wang J, Polleux J, Lim J, Dunn B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 2007;111:14925-31.

69. Jiang B, Su Y, Liu R, Sun Z, Wu D. Calcium based all-organic dual-ion batteries with stable low temperature operability. Small 2022;18:e2200049.

70. Lu P, Sun Y, Xiang H, Liang X, Yu Y. 3D Amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv Energy Mater 2018;8:1702434.

71. Tang B, Fang G, Zhou J, et al. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018;51:579-87.

72. He B, Man P, Zhang Q, et al. All Binder-free electrodes for high-performance wearable aqueous rechargeable sodium-ion batteries. Nanomicro Lett 2019;11:101.

73. Zhou G, An X, Zhou C, Wu Y, Miao Y, Liu T. Highly porous electroactive polyimide-based nanofibrous composite anode for all-organic aqueous ammonium dual-ion batteries. Compos Commun 2020;22:100519.

74. Wu H, Hu T, Chang S, Li L, Yuan W. Sodium-based dual-ion battery based on the organic anode and ionic liquid electrolyte. ACS Appl Mater Interfaces 2021;13:44254-65.

75. Lei X, Zheng Y, Zhang F, Wang Y, Tang Y. Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Stor Mater 2020;30:34-41.

76. Li Y, Guan Q, Cheng J, Wang B. Flexible high energy density sodium dual-ion battery with long cycle life. Energy Environ Mater 2022;5:1285-93.

77. Park S, Yoo J, Chang B, Ahn E. Novel instrumentation in electrochemical impedance spectroscopy and a full description of an electrochemical system. Pure Appl Chem 2006;78:1069-80.

78. Yang W, Zhou J, Wang S, et al. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci 2019;12:1605-12.

79. Ma W, Luo L, Huang X, et al. Dihydrophenazine-based conjugated microporous polymer cathodes with enhanced electronic and ionic conductivities for high-performance aluminum dual-ion batteries. Adv Energy Mater 2023;13:2203253.

80. Li Z, Liu J, Niu B, Li J, Kang F. A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte. Small 2018;14:e1800745.

81. Tao S, Demir B, Baktash A, et al. Solvent-derived fluorinated secondary interphase for reversible Zn-graphite dual-ion batteries. Angew Chem Int Ed 2023;62:e202307208.

82. Xiang L, Ou X, Wang X, Zhou Z, Li X, Tang Y. Highly concentrated electrolyte towards enhanced energy density and cycling life of dual-ion battery. Angew Chem Int Ed 2020;59:17924-30.

83. Song Z, Zhan H, Zhou Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem Commun 2009:448-50.

84. Wu H, Luo S, Li L, Xiao H, Yuan W. A high-capacity dual-ion full battery based on nitrogen-doped carbon nanosphere anode and concentrated electrolyte. Battery Energy 2023;2:20230009.

85. Lin R, Ke C, Chen J, Liu S, Wang J. Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 2022;6:399-417.

86. Liang Z, Gong D, Shang J, et al. Low volume expansion carbon-coated Fe2P4O12 anode material for high-performance sodium dual-ion battery. Energy Stor Mater 2022;53:331-9.

87. Wu N, Yao W, Song X, et al. A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature. Adv Energy Mater 2019;9:1803865.

88. Li X, Ou X, Tang Y. 6.0 V high-voltage and concentrated electrolyte toward high energy density K-based dual-graphite battery. Adv Energy Mater 2020;10:2002567.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/