REFERENCES

1. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

2. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 2021;6:123-34.

3. He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;33:e2005937.

4. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010;22:587-603.

5. Wang X, Zhang Z, Xi B, et al. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021;15:9244-72.

6. Zeng X, Hao J, Wang Z, Mao J, Guo Z. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor Mater 2019;20:410-37.

7. Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120:7795-866.

8. Kim S, Shan X, Abeykoon M, Kwon G, Olds D, Teng X. High-capacity aqueous storage in vanadate cathodes promoted by the Zn-ion and proton intercalation and conversion-intercalation of vanadyl ions. ACS Appl Mater Interfaces 2021;13:25993-6000.

9. Zheng X, Ahmad T, Chen W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Stor Mater 2021;39:365-94.

10. Zhao Q, Huang X, Zhou M, et al. Proton Insertion promoted a polyfurfural/MnO2 nanocomposite cathode for a rechargeable aqueous Zn-MnO2 battery. ACS Appl Mater Interfaces 2020;12:36072-81.

11. Li L, Hoang TKA, Zhi J, Han M, Li S, Chen P. Correction to "functioning mechanism of the secondary aqueous Zn-β-MnO2 battery". ACS Appl Mater Interfaces 2021;13:36653.

12. Chen W, Li G, Pei A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage. Nat Energy 2018;3:428-35.

13. Wang M, Zheng X, Zhang X, et al. Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv Energy Mater 2021;11:2002904.

14. Liang G, Mo F, Li H, et al. A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism. Adv Energy Mater 2019;9:1901838.

15. Zhang C. Made cheaper with sulfur and manganese. Nat Energy 2023;8:6.

16. Chen N, Wang W, Ma Y, et al. Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 2023:e2201553.

17. Wang M, Chen N, Zhu Z, et al. Electrode-less MnO2-metal batteries with deposition and stripping chemistry. Small 2021;17:e2103921.

18. Yu Y, Zhang H, Yang F, Zeng Y, Liu X, Lu X. Bismuth nanoparticles@carbon composite as a stable and high capacity anode for high-voltage bismuth-manganese batteries. Energy Stor Mater 2021;41:623-30.

19. Chao D, Zhou W, Ye C, et al. An electrolytic Zn-MnO2 Battery for high-voltage and scalable energy storage. Angew Chem Int Ed 2019;58:7823-8.

20. Yu X, Song Y, Tang A. Tailoring manganese coordination environment for a highly reversible zinc-manganese flow battery. J Power Sources 2021;507:230295.

21. Xu Q, Xie Q, Xue T, et al. Salt bridge-intermediated three phase decoupling electrolytes for high voltage electrolytic aqueous Zinc-Manganese dioxides battery. Chem Eng J 2023;451:138775.

22. Gou L, Li J, Liang K, Zhao S, Li D, Fan X. Bi-MOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries. Small 2023;19:e2208233.

23. Liu Y, Nan M, Zhao Z, et al. Manganese-based flow battery based on the MnCl2 electrolyte for energy storage. Chem Eng J 2023;465:142602.

24. Zeng X, Liu J, Mao J, et al. Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 Batteries via salt anion chemistry. Adv Energy Mater 2020;10:1904163.

25. Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat Energy 2020;5:440-9.

26. Li G, Chen W, Zhang H, et al. Membrane-free Zn/MnO2 flow battery for large-scale energy storage. Adv Energy Mater 2020;10:1902085.

27. Liu Z, Yang Y, Lu B, Liang S, Fan HJ, Zhou J. Insights into complexing effects in acetate-based Zn-MnO2 batteries and performance enhancement by all-round strategies. Energy Stor Mater 2022;52:104-10.

28. Xiao X, Zhang Z, Wu Y, et al. Ultrahigh-loading manganese-based electrodes for aqueous batteries via polymorph tuning. Adv Mater 2023;35:e2211555.

29. Liu C, Chi X, Han Q, Liu Y. A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte. Adv Energy Mater 2020;10:1903589.

30. Lei J, Yao Y, Wang Z, Lu Y. Towards high-areal-capacity aqueous zinc-manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ Sci 2021;14:4418-26.

31. Chao D, Ye C, Xie F, et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv Mater 2020;32:e2001894.

32. Yadav GG, Gallaway JW, Turney DE, et al. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat Commun 2017;8:14424.

33. Zheng X, Wang Y, Xu Y, et al. Boosting electrolytic MnO2-Zn Batteries by a bromine mediator. Nano Lett 2021;21:8863-71.

34. Shen X, Wang X, Zhou Y, et al. Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv Funct Mater 2021;31:2101579.

35. Chuai M, Yang J, Tan R, et al. Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv Mater 2022;34:e2203249.

36. Qin Z, Song Y, Yang D, et al. Enabling reversible MnO2/Mn2+ transformation by Al3+ addition for aqueous Zn-MnO2 hybrid batteries. ACS Appl Mater Interfaces 2022;14:10526-34.

37. Choi C, Kim S, Kim R, et al. A review of vanadium electrolytes for vanadium redox flow batteries. Renew Sustain Energy Rev 2017;69:263-74.

38. Liu Y, Shen Y, Yu L, et al. Holey-engineered electrodes for advanced vanadium flow batteries. Nano Energy 2018;43:55-62.

39. Sun M, Lan B, Lin T, et al. Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities. CrystEngComm 2013;15:7010-18.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/