REFERENCES

1. Wang L, Liu T, Wu T, Lu J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022;611:61-7.

2. Wang CY, Liu T, Yang XG, et al. Fast charging of energy-dense lithium-ion batteries. Nature 2022;611:485-90.

3. Liu T, Liu J, Li L, et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022;606:305-12.

4. Zhang W, Seo DH, Chen T, et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 2020;367:1030-4.

5. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018;559:556-63.

6. Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev 2014;114:11619-35.

7. Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta 2010;55:3330-5.

8. Zhao B, Ran R, Liu M, Shao Z. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R Rep 2015;98:1-71.

9. Yan L, Shu J, Li C, et al. W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Stor Mater 2019;16:535-44.

10. Yan L, Cheng X, Yu H, et al. Ultrathin W9Nb8O47 nanofibers modified with thermal NH3 for superior electrochemical energy storage. Energy Stor Mater 2018;14:159-68.

11. Yan L, Lan H, Yu H, et al. Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J Mater Chem A 2017;5:8972-80.

12. Griffith KJ, Grey CP. Superionic lithium intercalation through 2 × 2 nm2 columns in the crystallographic shear phase Nb18W8O69. Chem Mater 2020;32:3860-8.

13. Yang Y, Zhu H, Xiao J, et al. Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv Mater 2020;32:e1905295.

14. Yang Y, Zhao J. Wadsley-roth crystallographic shear structure niobium-based oxides: promising anode materials for high-safety lithium-ion batteries. Adv Sci 2021;8:e2004855.

15. Kim Y, Jacquet Q, Griffith KJ, et al. High rate lithium ion battery with niobium tungsten oxide anode. J Electrochem Soc 2021;168:010525.

16. Marinder BO. The pentagonal column and the ReO3-type structure. Angew Chem Int Ed 1986;25:431-42.

17. Bryntse I. A bismuth niobium oxide, BiNb5.4O15, with a TTB-related structure. Acta Chem Scand 1993;47:789-92.

18. Stephenson NC. A structural investigation of some stable phases in the region Nb2O5.WO3-WO3. Acta Crystallogr B 1968;24:637-53.

19. Iijima S, Allpress JG. Structural studies by high-resolution electron microscopy: tetragonal tungsten bronze-type structures in the system Nb2O5-WO3. Acta Crystallogr A 1974;30:22-9.

20. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Cryst 2001;34:210-3.

21. Larson AC, Von Dreele RB, General structure analysis system (GSAS). Los Alamos national laboratory report LAUR 86-748; 2004. Available from: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf [Last accessed on 4 Jan 2024].

22. Li X, Lin H, Li J, Wang N, Lin C, Zhang L. Chemical sintering of graded TiO2 film at low-temperature for flexible dye-sensitized solar cells. J Photochem Photobiol A 2008;195:247-53.

23. Fu Q, Li R, Zhu X, et al. Design, synthesis and lithium-ion storage capability of Al0.5Nb24.5O62. J Mater Chem A 2019;7:19862-71.

24. Zhu X, Xu J, Luo Y, et al. MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. J Mater Chem A 2019;7:6522-32.

25. Zhu X, Fu Q, Tang L, et al. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl Mater Interfaces 2018;10:23711-20.

26. Lin C, Deng S, Kautz DJ, et al. Intercalating Ti2Nb14O39 anode materials for fast-charging, high-capacity and safe lithium-ion batteries. Small 2017;13:1702903.

27. Yang C, Deng S, Lin C, et al. Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. Nanoscale 2016;8:18792-9.

28. Tahir MN, Theato P, Oberle P, et al. Facile synthesis and characterization of functionalized, monocrystalline rutile TiO2 nanorods. Langmuir 2006;22:5209-12.

29. Sarfraz S, Ali S, Khan SA, et al. Phase diagram and surface adsorption behavior of benzyl dimethyl hexadecyl ammonium bromide in a binary surfactant-water system. J Mol Liq 2019;285:403-7.

30. Bai P, Su F, Wu P, et al. Copolymer-controlled homogeneous precipitation for the synthesis of porous microfibers of alumina. Langmuir 2007;23:4599-605.

31. Jiang C, Hosono E, Ichihara M, Honma I, Zhou H. Synthesis of nanocrystalline Li4Ti5O12 by chemical lithiation of anatase nanocrystals and postannealing. J Electrochem Soc 2008;155:A553.

32. Penn RL, Banfield JF. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 1998;281:969-71.

33. Guo B, Yu X, Sun XG, et al. A long-life lithium-ion battery with a highly porous TiNb2O7 anode for large-scale electrical energy storage. Energy Environ Sci 2014;7:2220-6.

34. Fu Q, Zhu X, Li R, et al. A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Stor Mater 2020;30:401-11.

35. Wang X, Shen G. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 2015;15:104-15.

36. Yang L, Zhu X, Li X, et al. Conductive copper niobate: superior Li+-storage capability and novel Li+-transport mechanism. Adv Energy Mater 2019;9:1902174.

37. Ye W, Yu H, Cheng X, et al. Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochim Acta 2018;292:331-8.

38. Qian S, Yu H, Yan L, et al. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl Mater Interfaces 2017;9:30608-16.

39. Fu Q, Liu X, Hou J, et al. Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sources 2018;397:231-9.

40. Zhu H, Cheng X, Yu H, et al. K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy 2018;52:192-202.

41. Sarma DD, Rao CNR. XPES studies of oxides of second- and third-row transition metals including rare earths. J Electron Spectrosc Relat Phenom 1980;20:25-45.

42. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, 2nd edition. New York: Wiley; 2000. Available from: https://www.wiley.com/en-us/Electrochemical+Methods:+Fundamentals+and+Applications,+2nd+Edition-p-9780471043720 [Last accessed on 16 Nov 2023]

43. Zhu X, Cao H, Li R, et al. Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. J Mater Chem A 2019;7:25537-47.

44. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 2014;7:1597-614.

45. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 2013;12:518-22.

46. Schweidler S, de Biasi L, Schiele A, Hartmann P, Brezesinski T, Janek J. Volume changes of graphite anodes revisited: a combined Operando X-ray diffraction and in situ pressure analysis study. J Phys Chem C 2018;122:8829-35.

47. Li R, Liang G, Zhu X, et al. Mo3Nb14O44: a new Li+ container for high-performance electrochemical energy storage. Energy Environ Mater 2021;4:65-71.

48. Gu L, Zhu C, Li H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J Am Chem Soc 2011;133:4661-3.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/