1. Ausfelder F, Bazzanella A. Hydrogen in the chemical industry. In: Detlef Stolten, Bernd Emonts, editors. Hydrogen science and engineering : materials, processes, systems and technology. Weinheim: Wiley-VCH; 2016. pp. 19-39.
2. Chaubey R, Sahu S, James OO, Maity S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sustain Energy Rev 2013;23:443-62.
3. Hasanuzzaman M, Zubir US, Ilham NI, Seng Che H. Global electricity demand, generation, grid system, and renewable energy polices: a review. WIREs Energy Environ 2017;6:e222.
4. Liu Z, Ciais P, Deng Z, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Sci Data 2020;7:392.
5. Aghahosseini A, Solomon A, Breyer C, et al. Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness. Appl Energy 2023;331:120401.
6. Lippkau F, Franzmann D, Addanki T, et al. Global hydrogen and synfuel exchanges in an emission-free energy system. Energies 2023;16:3277.
7. Chi J, Yu H. Water electrolysis based on renewable energy for hydrogen production. Chinese J Catal 2018;39:390-4.
8. Younas M, Shafique S, Hafeez A, Javed F, Rehman F. An overview of hydrogen production: current status, potential, and challenges. Fuel 2022;316:123317.
9. Anwar S, Khan F, Zhang Y, Djire A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int J Hydrog Energy 2021;46:32284-317.
10. Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep 2022;8:13793-813.
11. Wu T, Qiu Z, Hsieh C. Obtaining Ni P electrocatalyst in minutes via electroless plating on carbon nanotubes decorated substrate for alkaline urea electrolysis. Appl Surf Sci 2024;645:158831.
12. Kovač A, Paranos M, Marciuš D. Hydrogen in energy transition: a review. Int J Hydrogen Energy 2021;46:10016-35.
13. Moradi R, Groth KM. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis. Int J Hydrog Energy 2019;44:12254-69.
14. Tang D, Tan G, Li G, et al. State-of-the-art hydrogen generation techniques and storage methods: a critical review. J Energy Stor 2023;64:107196.
15. Ong B, Kamarudin S, Basri S. Direct liquid fuel cells: a review. Int J Hydrog Energy 2017;42:10142-57.
16. Alias M, Kamarudin S, Zainoodin A, Masdar M. Active direct methanol fuel cell: an overview. Int J Hydrog Energy 2020;45:19620-41.
17. Ud Din MA, Idrees M, Jamil S, et al. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell. J Energy Chem 2023;77:499-513.
18. Ma Z, Legrand U, Pahija E, Tavares JR, Boffito DC. From CO2 to formic acid fuel cells. Ind Eng Chem Res 2021;60:803-15.
19. Zhang Y, Li F, Dong J, Jia K, Sun T, Xu L. Recent advances in designing efficient electrocatalysts for electrochemical carbon dioxide reduction to formic acid/formate. J Electroanal Chem 2023;928:117018.
20. Shi Y, Ma ZR, Xiao YY, et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun 2021;12:3021.
21. Shi Y, Lee C, Tan X, et al. Atomic-level metal electrodeposition: synthetic strategies, applications, and catalytic mechanism in electrochemical energy conversion. Small Struct 2022;3:2100185.
22. Tryk DA, Kuzume A. The electrochemistry of platinum-group and noble metals as it relates to fuel cells and water electrolysis: vibrational spectroscopic and computational insights. Curr Opin Electrochem 2023;41:101372.
23. Jeong H, Oh J, Yi GS, et al. High-performance water electrolyzer with minimum platinum group metal usage: iron nitride-iridium oxide core-shell nanostructures for stable and efficient oxygen evolution reaction. Appl Catal B Environ 2023;330:122596.
24. Hou J, Yang M, Ke C, et al. Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization. EnergyChem 2020;2:100023.
25. Seselj N, Alfaro SM, Bompolaki E, Cleemann LN, Torres T, Azizi K. Catalyst development for high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) applications. Adv Mater 2023;35:e2302207.
26. Wang J, Zhang B, Guo W, et al. Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv Mater 2023;35:e2211099.
27. Sun Y, Chen W, Zhang W, et al. Trimetallic porous PtIrBi nanoplates with robust CO tolerance for enhanced formic acid oxidation catalysis. Adv Funct Mater 2023;33:2303299.
28. Kim H, Hong S, Kim H, Jun Y, Kim SY, Ahn SH. Recent progress in Pt-based electrocatalysts for ammonia oxidation reaction. Appl Mater Today 2022;29:101640.
29. Lin HY, Lou ZX, Ding Y, et al. Oxygen evolution electrocatalysts for the proton exchange membrane electrolyzer: challenges on stability. Small Methods 2022;6:e2201130.
30. Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A 2020;8:24284-306.
31. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater 2019;31:1802234.
32. Hu S, Ge S, Liu H, Kang X, Yu Q, Liu B. Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv Funct Mater 2022;32:2201726.
33. Ruban A, Hammer B, Stoltze P, Skriver H, Nørskov J. Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A Chem 1997;115:421-9.
34. You B, Tang MT, Tsai C, Abild-Pedersen F, Zheng X, Li H. Enhancing electrocatalytic water splitting by strain engineering. Adv Mater 2019;31:e1807001.
35. Gawande MB, Goswami A, Asefa T, et al. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 2015;44:7540-90.
36. Kunene T, Kwanda Tartibu L, Ukoba K, Jen T. Review of atomic layer deposition process, application and modeling tools. Mater Today Proc 2022;62:S95-109.
37. Vasilyev VY, Morozova NB, Basova TV, Igumenov IK, Hassan A. Chemical vapour deposition of Ir-based coatings: chemistry, processes and applications. RSC Adv 2015;5:32034-63.
38. Pandey PA, Bell GR, Rourke JP, et al. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small 2011;7:3202-10.
39. Liang J, Liu Q, Li T, et al. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem 2021;23:2834-67.
40. Kim J, Kim H, Han GH, et al. Electrodeposition: an efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration 2022;2:20210077.
41. Yeo K, Eo J, Kim MJ, Kim S. Shape control of metal nanostructures by electrodeposition and their applications in electrocatalysis. J Electrochem Soc 2022;169:112502.
42. Kale MB, Borse RA, Mohamed AGA, Wang Y. Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Adv Funct Mater 2021;31:2101313.
43. Dimitrov N. Recent advances in the growth of metals, alloys, and multilayers by surface limited redox replacement (SLRR) based approaches. Electrochim Acta 2016;209:599-622.
44. Liu Y, Gokcen D, Bertocci U, Moffat TP. Self-terminating growth of platinum films by electrochemical deposition. Science 2012;338:1327-30.
45. Switzer JA. Atomic layer electrodeposition. Science 2012;338:1300-1.
46. Liu Y, Hangarter CM, Garcia D, Moffat TP. Self-terminating electrodeposition of ultrathin Pt films on Ni: an active, low-cost electrode for H2 production. Surf Sci 2015;631:141-54.
47. Ahn SH, Liu Y, Moffat TP. Ultrathin platinum films for methanol and formic acid oxidation: activity as a function of film thickness and coverage. ACS Catal 2015;5:2124-36.
48. Ahn SH, Tan H, Haensch M, Liu Y, Bendersky LA, Moffat TP. Self-terminated electrodeposition of iridium electrocatalysts. Energy Environ Sci 2015;8:3557-62.
49. Liu Y, You H, Kimmel YC, Esposito DV, Chen JG, Moffat TP. Self-terminating electrodeposition of Pt on WC electrocatalysts. Chem Mater 2020;504:144472.
50. Kim H, Kim J, Han GH, Jang HW, Kim SY, Ahn SH. Hydrogen evolving electrode with low Pt loading fabricated by repeated pulse electrodeposition. Korean J Chem Eng 2020;37:1340-5.
51. Kim H, Kim J, Kim J, et al. Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer. Appl Catal B Environ 2021;283:119596.
52. Hong S, Kim H, Kim J, Kim S, Ahn S. Electrochemical synthesis of Pt-decorated Au dendrite anode for constructing a direct formic acid fuel cell. Mater Today Chem 2022;26:101162.
53. Kim J, Kim H, Kim S, et al. Atomic Pt clusters on Au dendrite for formic acid oxidation. Chem Eng J 2023;451:138664.
54. Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK. An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer. Nanoscale 2017;9:19045-9.
55. Kim D, Kim H, Park H, et al. Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition. J Power Sources 2019;438:227022.
56. Byun J, Ahn SH, Kim JJ. Self-terminated electrodeposition of platinum on titanium nitride for methanol oxidation reaction in acidic electrolyte. Int J Hydrog Energy 2020;45:9603-11.
57. Li M, Ma Q, Zi W, Liu X, Zhu X, Liu SF. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci Adv 2015;1:e1400268.
58. Pang L, Li M, Ma Q, et al. Controlled Pt monolayer fabrication on complex carbon fiber structures for superior catalytic applications. Electrochim Acta 2016;222:1522-7.
59. Pang L, Zhang Y, Liu SF. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure. Appl Surf Sci 2017;407:386-90.
60. Kim D, Kim J. Effect of anionic electrolytes and precursor concentrations on the electrodeposited Pt structures. Electroanalysis 2017;29:387-91.
61. Jeong H, Kim J. Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by electrochemical SERS. J Phys Chem C 2016;120:24271-8.
62. Lee E, Sung M, Wang Y, Kim J. Atomic layer electrodeposition of Pt on nanoporous Au and its application in pH sensing. Electroanalysis 2018;30:2028-34.
63. Jeong H, Kim J. Methanol dehydrogenation reaction at Au@Pt catalysts: insight into the methanol electrooxidation. Electrochim Acta 2018;283:11-7.
64. Wang Y, Kim J. Oxygen evolution reaction on nanoporous gold modified with Ir and Pt: synergistic electrocatalysis between structure and composition. Electroanalysis 2019;31:1026-33.
65. Elezović N, Branković G, Zabinski P, Marzec M, Jović V. Ultra-thin layers of iridium electrodeposited on Ti2AlC support as cost effective catalysts for hydrogen production by water electrolysis. J Electroanal Chem 2020;878:114575.
66. Elezović N, Krstajić-pajić M, Jović V. Sub-monolayers of iridium electrodeposited on Ti2AlC substrate as catalysts for hydrogen evolution reaction in sulfuric acid solution. Zaštita Materijala 2020;61:181-91.
67. Elezović NR, Zabinski P, Lačnjevac UČ, Pajić MNK, Jović VD. Electrochemical deposition and characterization of iridium oxide films on Ti2AlC support for oxygen evolution reaction. J Solid State Electrochem 2021;25:351-63.
68. Petričević A, Jović V, Krstajić-pajić M, Zabinski P, Elezović N. Oxygen reduction reaction on electrochemically deposited sub-monolayers and ultra-thin layers of Pt on (Nb-Ti)2AlC substrate. Zaštita Materijala 2022;63:153-64.
69. Deng Y, Tripkovic V, Rossmeisl J, Arenz M. Oxygen reduction reaction on Pt overlayers deposited onto a gold film: ligand, strain, and ensemble effect. ACS Catal 2016;6:671-6.
70. Lapp AS, Duan Z, Marcella N, et al. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method. J Am Chem Soc 2018;140:6249-59.
71. Proch S, Yoshino S, Kitazumi K, Seki J, Kodama K, Morimoto Y. Over-potential deposited hydrogen (Hopd) as terminating agent for platinum and gold electro(co)deposition. Electrocatalysis 2019;10:591-603.
72. Lapp AS, Crooks RM. Multilayer electrodeposition of Pt onto 1-2 nm Au nanoparticles using a hydride-termination approach. Nanoscale 2020;12:11026-39.
73. Pfisterer JHK, Liang Y, Schneider O, Bandarenka AS. Direct instrumental identification of catalytically active surface sites. Nature 2017;549:74-7.
74. Chang JC, Garner CS. Kinetics of aquation of aquopentachloroiridate(III) and chloride anation of diaquotetrachloroiridate(III) anions. Inorg Chem 1965;4:209-15.
75. Poulsen IA, Garner CS. A thermodynamic and kinetic study of hexachloro and aquopentachloro complexes of iridium(III) in aqueous solutions. J Am Chem Soc 1962;84:2032-7.
76. Ahn M, Kim J. Insights into the electrooxidation of formic acid on Pt and Pd shells on Au core surfaces via SERS at dendritic Au rod electrodes. J Phys Chem C 2013;117:24438-45.
77. Hyun M, Choi S, Lee YW, Kwon SH, Han SW, Kim J. Simple electrodeposition of dendritic Au rods from sulfite-based Au(I) electrolytes with high electrocatalytic and SERS activities. Electroanalysis 2011;23:2030-5.
78. Choi S, Ahn M, Kim J. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates. Anal Chim Acta 2013;779:1-7.
79. Cao D, Lu GQ, Wieckowski A, Wasileski SA, Neurock M. Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J Phys Chem B 2005;109:11622-33.
80. Musthafa OT, Sampath S. High performance platinized titanium nitride catalyst for methanol oxidation. Chem Commun 2008;67-9.
81. Markovića NM, Sarraf ST, Gasteiger HA, Ross PN. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J Chem Soc Faraday Trans 1996;92:3719-25.
82. Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011;334:1256-60.
83. Danilovic N, Subbaraman R, Chang KC, et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J Phys Chem Lett 2014;5:2474-8.
84. Cherevko S, Geiger S, Kasian O, et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 2016;262:170-80.
85. Kasian O, Grote JP, Geiger S, Cherevko S, Mayrhofer KJJ. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium. Angew Chem Int Ed 2018;57:2488-91.
86. Rao C, Cabrera CR, Ishikawa Y. Graphene-supported Pt-Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J Phys Chem C 2011;115:21963-70.
87. Kong F, Du C, Ye J, Chen G, Du L, Yin G. Selective surface engineering of heterogeneous nanostructures: in situ unraveling of the catalytic mechanism on Pt-Au catalyst. ACS Catal 2017;7:7923-9.
88. Duchesne PN, Li ZY, Deming CP, et al. Golden single-atomic-site platinum electrocatalysts. Nat Mater 2018;17:1033-9.
89. Zhong W, Qi Y, Deng M. The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations. J Power Sources 2015;278:203-12.
90. Avasarala B, Haldar P. Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim Acta 2010;55:9024-34.
91. Zhang RQ, Lee TH, Yu BD, Stampfl C, Soon A. The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys Chem Chem Phys 2012;14:16552-7.
92. Grozovski V, Climent V, Herrero E, Feliu JM. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps. Chemphyschem 2009;10:1922-6.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.