REFERENCES

1. Yin S, Deng W, Chen J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021;83:105854.

2. Zhang X, Liu G, Zhou K, et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine. Energy Mater 2021;1:100005.

3. Teichert P, Eshetu GG, Jahnke H, Figgemeier E. Degradation and aging routes of Ni-rich cathode based Li-ion batteries. Batteries 2020;6:8.

4. Zhang SS. Problems and their origins of Ni-rich layered oxide cathode materials. Energy Stor Mater 2020;24:247-54.

5. Liu L, Li M, Chu L, et al. Layered ternary metal oxides: performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog Mater Sci 2020;111:100655.

6. Jung CH, Shim H, Eum D, Hong SH. Challenges and recent progress in LiNixCoyMn1-x-yO2 (NCM) cathodes for lithium ion batteries. J Korean Ceram Soc 2021;58:1-27.

7. Kim DH, Song JH, Jung CH, et al. Stepwise dopant selection process for high-Nickel layered oxide cathodes. Adv Energy Mater 2022;12:2200136.

8. Kim UH, Park GT, Conlin P, et al. Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ Sci 2021;14:1573-83.

9. Heng YL, Gu ZY, Guo JZ, Yang XT, Zhao XX, Wu XL. Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials. Energy Mater 2022;2:200017.

10. Yin S, Chen H, Chen J, et al. Chemical-mechanical effects in Ni-rich cathode materials. Chem Mater 2022;34:1509-23.

11. Lee SH, Sim SJ, Jin BS, Kim HS. High performance well-developed single crystal LiNi0.91Co0.06Mn0.03O2 cathode via LiCl-NaCl flux method. Mater Lett 2020;270:127615.

12. Park GT, Park NY, Noh TC, et al. High-performance Ni-rich Li[Ni0.9-xCo0.1Alx]O2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy Environ Sci 2021;14:5084-95.

13. Huang B, Cheng L, Li X, et al. Layered cathode materials: precursors, synthesis, microstructure, electrochemical properties, and battery performance. Small 2022;18:e2107697.

14. Cheng L, Zhou Y, Zhang B, et al. High-rate Ni-rich single-crystal cathodes with highly exposed {0 1 0} active planes through in-situ Zr doping. Chem Eng J 2023;452:139336.

15. Namkoong B, Park NY, Park GT, et al. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles. Adv Energy Mater 2022;12:2200615.

16. Park GT, Yoon DR, Kim UH, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy Environ Sci 2021;14:6616-26.

17. Kim UH, Park JH, Aishova A, et al. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries. Adv Energy Mater 2021;11:2100884.

18. Ren D, Shen Y, Yang Y, et al. Systematic optimization of battery materials: key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 2017;9:35811-9.

19. Gan Q, Qin N, Wang Z, et al. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes. ACS Appl Energy Mater 2020;3:7445-55.

20. Yoon M, Dong Y, Hwang J, et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy 2021;6:362-71.

21. Ni L, Chen H, Deng W, et al. Atomical reconstruction and cationic reordering for nickel-rich layered cathodes. Adv Energy Mater 2022;12:2103757.

22. Ryu HH, Namkoong B, Kim JH, Belharouak I, Yoon CS, Sun YK. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett 2021;6:2726-34.

23. Qian R, Liu Y, Cheng T, et al. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:13813-23.

24. Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 2018;30:1155-63.

25. Su Y, Zhang Q, Chen L, et al. Improved stability of layered and porous Nickel-rich cathode materials by relieving the accumulation of inner stress. ChemSusChem 2020;13:426-33.

26. Liu H, Xie Z, Qu W, et al. High-voltage induced surface and intragranular structural evolution of Ni-rich layered cathode. Small 2022;18:e2200627.

27. Ni L, Guo R, Deng W, et al. Single-crystalline Ni-rich layered cathodes with super-stable cycling. Chem Eng J 2022;431:133731.

28. Zhu H, Tang Y, Wiaderek KM, et al. Spontaneous strain buffer enables superior cycling stability in single-crystal Nickel-rich NCM cathode. Nano Lett 2021;21:9997-10005.

29. Du B, Mo Y, Li D, Cao B, Chen Y, Zhen H. Relieving the reaction heterogeneity at the subparticle scale in Ni-rich cathode materials with boosted cyclability. ACS Appl Mater Interfaces 2022;14:6729-39.

30. Wang L, Wang R, Wang J, Xu R, Wang X, Zhan C. Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials. ACS Appl Mater Interfaces 2021;13:8324-36.

31. Nam GW, Park NY, Park KJ, et al. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett 2019;4:2995-3001.

32. Zhang Y, Zhao C, Guo Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. Int J Mech Sci 2019;155:178-86.

33. Yang X, Wang S, Han D, et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathodes. Small 2022;18:e2201522.

34. Dai Z, Zhao H, Chen W, et al. In situ construction of gradient oxygen release buffer and interface cation self-accelerator stabilizing high-voltage Ni-rich cathode. Adv Funct Mater 2022;32:2206428.

35. Zhuang Y, Zhao Y, Bao Y, Zhang W, Guan M. Research on the electrochemical properties of vanadium boride coated on the surface of NCM811. J Alloys Compd 2022;927:166967.

36. Qiu L, Zhang MK, Song Y, et al. Deciphering the degradation discrepancy in Ni-rich cathodes with a diverse proportion of [003] crystallographic textures. Carbon Energy 2023;5:e298.

37. Cui Z, Guo Z, Manthiram A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv Energy Mater 2023;13:2203853.

38. Zhou Y, Xiao Z, Han D, et al. Approaching practically accessible and environmentally adaptive sodium metal batteries with high loading cathodes through in situ interlock interface. Adv Funct Mater 2022;32:2111314.

39. Zou Y, Meng F, Xiao D, et al. Constructing a stable interfacial phase on single-crystalline Ni-rich cathode via chemical reaction with phosphomolybdic acid. Nano Energy 2021;87:106172.

40. Zhou J, Zhang S, Zhou YN, et al. Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochem Energy Rev 2021;4:219-48.

41. Kim SY, Park CS, Hosseini S, Lampert J, Kim YJ, Nazar LF. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv Energy Mater 2021;11:2100552.

42. Liang JY, Zeng XX, Zhang XD, et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J Am Chem Soc 2018;140:6767-70.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/