1. Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change - a review. Energy Policy 2013;52:797-809.
2. Abdalla AM, Hossain S, Azad AT, et al. Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 2018;82:353-68.
3. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 2011;3:546-50.
4. Singhal SC. Solid oxide fuel cells for power generation. WIREs Energy Environ 2014;3:179-94.
5. Jiang S, Zhou W, Niu Y, Zhu Z, Shao Z. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells. ChemSusChem 2012;5:2023-31.
6. Holtappels P, Stimming U. Solid oxide fuel cells (SOFC). In: Vielstich W, Lamm A, Gasteiger HA, Yokokawa H, editors. Handbook of fuel cells. Hoboken: Wiley; 2010.
7. Fan L. Solid-state electrolytes for SOFC. In: Zhu B, Raza R, Fan L, Sun C, editors. Solid oxide fuel cells. Hoboken: Wiley; 2020. pp. 35-78.
8. Lacerda M, Irvine JTS, Glasser FP, West AR. High oxide ion conductivity in Ca12Al14O33. Nature 1988;332:525-6.
9. Nakayama S, Kageyama T, Aono H, Sadaoka Y. Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 1995;5:1801-5.
10. Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y. Designing fast oxide-ion conductors based on La2Mo2O9. Nature 2000;404:856-8.
11. Haugsrud R, Norby T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat Mater 2006;5:193-6.
12. Li M, Pietrowski MJ, De Souza RA, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 2014;13:31-5.
13. Singh P, Goodenough JB. Monoclinic Sr1-xNaxSiO3-0.5x: new superior oxide ion electrolytes. J Am Chem Soc 2013;135:10149-54.
14. Fan L, Zhu B, Su P, He C. Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 2018;45:148-76.
15. Zhu B, Albinsson I, Andersson C, Borsand K, Nilsson M, Mellander B. Electrolysis studies based on ceria-based composites. Electrochem Commun 2006;8:495-8.
16. Fan L, Zhang G, Chen M, Wang C, Di J, Zhu B. Proton and oxygen ionic conductivity of doped ceria- carbonate composite by modified Wagner polarization. Int J Electrochem Sci 2012;7:8420-35.
17. Zhu B, Raza R, Qin H, Liu Q, Fan L. Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ Sci 2011;4:2986-92.
18. Zhu B, Raza R, Abbas G, Singh M. An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv Funct Mater 2011;21:2465-9.
19. Garcia-barriocanal J, Rivera-calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 2008;321:676-80.
20. Singh K, Nowotny J, Thangadurai V. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review. Chem Soc Rev 2013;42:1961-72.
21. Götsch T, Bertel E, Menzel A, Stöger-pollach M, Penner S. Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys Rev Mater 2018;2:035801.
22. Asghar MI, Jouttijärvi S, Jokiranta R, Valtavirta A, Lund PD. Wide bandgap oxides for low-temperature single-layered nanocomposite fuel cell. Nano Energy 2018;53:391-7.
23. Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 2004;104:4791-843.
24. Sunarso J, Hashim SS, Zhu N, Zhou W. Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Prog Energy Combust Sci 2017;61:57-77.
25. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 2014;8:133-8.
26. Oikawa T, Ohdaira K, Higashimine K, Matsumura H. Application of crystalline silicon surface oxidation to silicon heterojunction solar cells. Curr Appl Phys 2015;15:1168-72.
27. Wu S, Li L, Wang W, et al. Study on the front contact mechanism of screen-printed multi-crystalline silicon solar cells. Sol Energy Mater Sol Cells 2015;141:80-6.
28. Zhu B, Huang Y, Fan L, et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 2016;19:156-64.
29. Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2013;2:1179-85.
30. Xia C, Mi Y, Wang B, Lin B, Chen G, Zhu B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 2019;10:1707.
31. Zhu B, Wang B, Wang Y, et al. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 2017;37:195-202.
32. Zhang Y, Liu J, Singh M, et al. Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells. Nanomicro Lett 2020;12:178.
33. Takahashi T, Esaka T, Iwahara H. Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity. J Appl Electrochem 1977;7:303-8.
34. Zhu B, Mi Y, Xia C, et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy Mater 2021;1:100002.
35. Zakaria Z, Abu Hassan SH, Shaari N, Yahaya AZ, Boon Kar Y. A review on recent status and challenges of yttria stabilized zirconia modification to lowering the temperature of solid oxide fuel cells operation. Int J Energy Res 2020;44:631-50.
36. He L, Su Y, Lanhong J, Shi S. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. J Rare Earths 2015;33:791-9.
37. Bhalla AS, Guo R, Roy R. The perovskite structure - a review of its role in ceramic science and technology. Mater Res Innov 2000;4:3-26.
38. Wang Z, Meng Y, Singh M, et al. Ni/NiO exsolved perovskite La0.2Sr0.7Ti0.9Ni0.1O3-δ for semiconductor-ionic fuel cells: roles of electrocatalytic activity and physical junctions. ACS Appl Mater Interfaces 2023;15:870-81.
39. Shao K, Li F, Zhang G, Zhang Q, Maliutina K, Fan L. Approaching durable single-layer fuel cells: promotion of electroactivity and charge separation via nanoalloy redox exsolution. ACS Appl Mater Interfaces 2019;11:27924-33.
40. Sunarso J, Baumann S, Serra J, et al. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 2008;320:13-41.
41. Ali R, Yashima M. Space group and crystal structure of the perovskite CaTiO3 from 296 to 1720 K. J Solid State Chem 2005;178:2867-72.
42. Goodenough JB. Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys 2004;67:1915.
43. Islam QA, Majee R, Bhattacharyya S. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis. J Mater Chem A 2019;7:19453-64.
44. Ishihara T. Low temperature solid oxide fuel cells using LaGaO3-based oxide electrolyte on metal support. J Jpn Petrol Inst 2015;58:71-8.
45. An H, Shin D, Choi SM, et al. BaCeO3-BaZrO3 solid solution (BCZY) as a high performance electrolyte of protonic ceramic fuel cells (PCFCs). J Korean Ceram Soc 2014;51:271-7.
46. Kim J, Sengodan S, Kwon G, et al. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells. ChemSusChem 2014;7:2811-5.
47. Shen F, Lu K. Comparison of different perovskite cathodes in solid oxide fuel cells. Fuel Cells 2018;18:457-65.
48. Fan L, Su P. Layer-structured LiNi0.8Co0.2O2: a new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells. J Power Sources 2016;306:369-77.
49. Huang YH, Dass RI, Xing ZL, Goodenough JB. Double perovskites as anode materials for solid-oxide fuel cells. Science 2006;312:254-7.
50. Tao S, Irvine JT. A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2003;2:320-3.
51. Dragan M, Enache S, Varlam M, Petrov K. Perovskite-based materials for energy applications. In: Tian H, editor. Perovskite materials, devices and integration. London: IntechOpen; 2020.
52. Yousaf M, Mushtaq N, Zhu B, et al. Electrochemical properties of Ni0.4Zn0.6Fe2O4 and the heterostructure composites (Ni-Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC). Electrochim Acta 2020;331:135349.
53. Pilania G, Kocevski V, Valdez JA, Kreller CR, Uberuaga BP. Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Commun Mater 2020;1:84.
54. Lan R, Tao S. Novel proton conductors in the layered oxide material LixlAl0.5Co0.5O2. Adv Energy Mater 2014;4:1301683.
55. Sebastian L, Jayashree RS, Gopalakrishnan J. Probing the mobility of lithium in LISICON: Li+/H+ exchange studies in Li2ZnGeO4 and Li2+2xZn1-xGeO4. J Mater Chem 2003;13:1400-5.
56. Prabhakaran K, Beigh M, Lakra J, Gokhale N, Sharma S. Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process. J Mater Process Technol 2007;189:178-81.
57. Esposito V, Gadea C, Hjelm J, et al. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells. J Power Sources 2015;273:89-95.
58. Park J, Lee Y, Chang I, et al. Atomic layer deposition of yttria-stabilized zirconia thin films for enhanced reactivity and stability of solid oxide fuel cells. Energy 2016;116:170-6.
59. Lu Z, Zhou X, Fisher D, et al. Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer. Electrochem Commun 2010;12:179-82.
60. Lee J, Lee Y, Lee H, Heo Y, Lee J, Kim J. Effect of Li2O content and sintering temperature on the grain growth and electrical properties of Gd-doped CeO2 ceramics. Ceram Int 2016;42:11170-6.
61. Xu R, Wu Y, Wang X, Zhang J, Yang X, Zhu B. Enhanced ionic conductivity of yttria-stabilized ZrO2 with natural CuFe-oxide mineral heterogeneous composite for low temperature solid oxide fuel cells. Int J Hydrog Energy 2017;42:17495-503.
62. Liu W, Lin D, Sun J, Zhou G, Cui Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016;10:11407-13.
63. Han M, Tang X, Yin H, Peng S. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J Power Sources 2007;165:757-63.
64. Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects. Electrochim Acta 2000;45:2423-35.
65. Anirban S, Dutta A. Structural and ionic transport mechanism of rare earth doped cerium oxide nanomaterials: effect of ionic radius of dopant cations. Solid State Ion 2017;309:137-45.
66. Singh M, Singh AK. Studies on structural, morphological, and electrical properties of Ga3+ and Cu2+ co-doped ceria ceramics as solid electrolyte for IT-SOFCs. Int J Hydrog Energy 2020;45:24014-25.
67. Wang B, Zhu B, Yun S, et al. Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells. NPG Asia Mater 2019;11:51.
68. Chen G, Liu H, He Y, et al. Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte. J Mater Chem A 2019;7:9638-45.
69. Iwahara H, Esaka T, Uchida H, Maeda N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion 1981;3-4:359-63.
70. Tao S, Irvine J. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv Mater 2006;18:1581-4.
71. Zuo C, Zha S, Liu M, Hatano M, Uchiyama M. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv Mater 2006;18:3318-20.
72. Zhao Y, Zhang K, Li Y, et al. Enhanced electrocatalytic oxidation of formate via introducing surface reactive oxygen species to a CeO2 substrate. ACS Appl Mater Interfaces 2021;13:51643-51.
73. Scherrer B, Schlupp MV, Stender D, et al. On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 2013;23:1957-64.
74. Shirpour M, Gregori G, Merkle R, Maier J. On the proton conductivity in pure and gadolinium doped nanocrystalline cerium oxide. Phys Chem Chem Phys 2011;13:937-40.
75. Stub SØ, Vøllestad E, Norby T. Mechanisms of protonic surface transport in porous oxides: example of YSZ. J Phys Chem C 2017;121:12817-25.
76. Miyoshi S, Akao Y, Kuwata N, et al. Low-temperature protonic conduction based on surface protonics: an example of nanostructured yttria-doped zirconia. Chem Mater 2014;26:5194-200.
77. Xing Y, Wu Y, Li L, et al. Proton shuttles in CeO2/CeO2-δ core-shell structure. ACS Energy Lett 2019;4:2601-7.
78. Li L, Zhu B, Zhang J, Yan C, Wu Y. Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int J Hydrog Energy 2018;43:12909-16.
79. Paydar S, Zhu B, Shi J, et al. Surfacial proton conducting CeO2 nanosheets. Ceram Int 2023;49:9138-46.
80. Morales M, Roa J, Tartaj J, Segarra M. A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: from materials processing to electrical and thermo-mechanical properties. J Eur Ceram Soc 2016;36:1-16.
81. Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O. A brief review on ceria based solid electrolytes for solid oxide fuel cells. J Alloys Compd 2019;781:984-1005.
82. Cai Y, Chen Y, Akbar M, et al. A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-δ-SrTiO3 for low-temperature solid oxide fuel cells. Nanomicro Lett 2021;13:46.
83. Benamira M, Ringuedé A, Albin V, et al. Gadolinia-doped ceria mixed with alkali carbonates for solid oxide fuel cell applications: I. A thermal, structural and morphological insight. J Power Sources 2011;196:5546-54.
84. Xia C, Li Y, Tian Y, et al. A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J Power Sources 2009;188:156-62.
85. Kharton V, Marques F, Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ion 2004;174:135-49.
86. Fan L, Wang C, Chen M, Zhu B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sources 2013;234:154-74.
87. Zhu B, Yun S, Lund PD. Semiconductor-ionic materials could play an important role in advanced fuel-to-electricity conversion. Int J Energy Res 2018;42:3413-5.
88. Shi Y, Wang L, Wang Z, et al. Defect engineering for tuning the photoresponse of ceria-based solid oxide photoelectrochemical cells. ACS Appl Mater Interfaces 2021;13:541-51.
89. Zhu B, Fan L, Mushtaq N, et al. Semiconductor electrochemistry for clean energy conversion and storage. Electrochem Energy Rev 2021;4:757-92.
90. Fan L, Ma Y, Wang X, Singh M, Zhu B. Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell. J Mater Chem A 2014;2:5399-407.
91. He HP, Huang XJ, Chen LQ. A practice of single layer solid oxide fuel cell. Ionics 2000;6:64-9.
92. He H, Huang X, Chen L. Sr-doped LaInO3 and its possible application in a single layer SOFC. Solid State Ion 2000;130:183-93.
93. Kilner JA. Ionic conductors: feel the strain. Nat Mater 2008;7:838-9.
94. Lee S, Zhang W, Khatkhatay F, Wang H, Jia Q, Macmanus-driscoll JL. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett 2015;15:7362-9.
95. Yang SM, Lee S, Jian J, et al. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat Commun 2015;6:8588.
96. Lu Y, Zhu B, Cai Y, et al. Progress in electrolyte-free fuel cells. Front Energy Res 2016;4:17.
97. Hu H, Lin Q, Zhu Z, Zhu B, Liu X. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2-δ-Li0.3Ni0.6Cu0.07Sr0.03O2-δ layer. J Power Sources 2014;248:577-81.
98. Xia Y, Liu X, Bai Y, et al. Electrical conductivity optimization in electrolyte-free fuel cells by single-component Ce0.8Sm0.2O2-δ-Li0.15Ni0.45Zn0.4 layer. RSC Adv 2012;2:3828-34.
99. Zhao C, Li Y, Zhang W, et al. Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ Sci 2020;13:53-85.
100. Dong W, Tong Y, Zhu B, et al. Semiconductor TiO2 thin film as an electrolyte for fuel cells. J Mater Chem A 2019;7:16728-34.
101. Zhu B, Lund PD, Raza R, et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv Energy Mater 2015;5:1401895.
102. Jiang SP, Wang X. Fuel cells: advances and challenges. In: Kharton VV, editor. Solid state electrochemistry II. Hoboken: Wiley; 2011. pp. 179-264.
103. Fergus JW. Electrolytes for solid oxide fuel cells. J Power Sources 2006;162:30-40.
104. Sammes N, Tompsett G, Näfe H, Aldinger F. Bismuth based oxide electrolytes - structure and ionic conductivity. J Eur Ceram Soc 1999;19:1801-26.
105. Strickler DW, Carlson WG. Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2. J Am Ceram Soc 1964;47:122-7.
106. Dixon JM, Lagrange LD, Merten U, Miller CF, Porter JT. Electrical resistivity of stabilized zirconia at elevated temperatures. J Electrochem Soc 1963;110:276.
107. Yeh T, Hsu W, Chou C. Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd). J Phys IV France 2005;128:213-9.
108. Yamamoto O, Arati Y, Takeda Y, et al. Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion 1995;79:137-42.
109. Sarat S, Sammes N, Smirnova A. Bismuth oxide doped scandia-stabilized zirconia electrolyte for the intermediate temperature solid oxide fuel cells. J Power Sources 2006;160:892-6.
110. Hirano M, Watanabe S, Kato E, Mizutani Y, Kawai M, Nakamura Y. High electrical conductivity and high fracture strength of Sc2O3-doped zirconia ceramics with submicrometer grains. J Am Ceram Soc 1999;82:2861-4.
111. Malavasi L, Fisher CA, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 2010;39:4370-87.
112. Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 1994;116:3801-3.
113. Takahashi T, Iwahara H, Nagai Y. High oxide ion conduction in sintered Bi2O3 containing SrO, CaO or La2O3. J Appl Electrochem 1972;2:97-104.
114. Wang X, Ma Y, Zhu B. State of the art ceria-carbonate composites (3C) electrolyte for advanced low temperature ceramic fuel cells (LTCFCs). Int J Hydrog Energy 2012;37:19417-25.
115. Fruth V, Ianculescu A, Berger D, et al. Synthesis, structure and properties of doped Bi2O3. J Eur Ceram Soc 2006;26:3011-6.
116. Shuk P, Wiemhöfer HD, Guth U, Göpel W, Greenblatt M. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ion 1996;89:179-96.
117. Steele BC, Heinzel A. Materials for fuel-cell technologies. Nature 2001;414:345-52.
118. Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion 2000;129:63-94.
119. Shimonosono T, Hirata Y, Sameshima S, Horita T. Electronic conductivity of La-doped ceria ceramics. J Am Ceram Soc 2005;88:2114-20.
120. Sha X, Lü Z, Huang X, et al. Study on La and Y co-doped ceria-based electrolyte materials. J Alloys Compd 2007;428:59-64.
121. Anirban S, Dutta A. Structure and defect interaction mediated transport mechanism of mixed di-tri valent cation containing ceria-based Ionic conductors. Int J Hydrog Energy 2018;43:23418-29.
122. Khakpour Z, Youzbashi AA, Maghsoudipour A. Influence of Gd3+ and Dy3+ co-doping and sintering regime on enhancement of electrical conductivity of ceria-based solid electrolyte. Ionics 2014;20:1407-17.
123. Wang F, Chen S, Cheng S. Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem Commun 2004;6:743-6.
124. Rai A, Mehta P, Omar S. Ionic conduction behavior in SmxNd0.15-xCe0.85O2-δ. Solid State Ion 2014;263:190-6.
125. Tadokoro S, Muccillo E. Effect of Y and Dy co-doping on electrical conductivity of ceria ceramics. J Eur Ceram Soc 2007;27:4261-4.
126. Lin Y, Fang S, Su D, Brinkman KS, Chen F. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat Commun 2015;6:6824.
127. Ramesh S, James Raju K. Preparation and characterization of Ce1-x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs. Int J Hydrog Energy 2012;37:10311-7.
128. Arunkumar P, Preethi S, Suresh Babu K. Role of iron addition on grain boundary conductivity of pure and samarium doped cerium oxide. RSC Adv 2014;4:44367-76.
129. Zając W, Suescun L, Świerczek K, Molenda J. Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions. J Power Sources 2009;194:2-9.
130. Kang YJ, Choi GM. The effect of alumina and Cu addition on the electrical properties and the SOFC performance of Gd-doped CeO2 electrolyte. Solid State Ion 2009;180:886-90.
131. Zhu B, Yang X, Xu J, et al. Innovative low temperature SOFCs and advanced materials. J Power Sources 2003;118:47-53.
132. Raza R, Wang X, Ma Y, Liu X, Zhu B. Improved ceria-carbonate composite electrolytes. Int J Hydrog Energy 2010;35:2684-8.
133. Zhang G, Li W, Huang W, et al. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: one-step synthesis and super interfacial proton conduction. J Power Sources 2018;386:56-65.
134. Zhu B, Li S, Mellander B. Theoretical approach on ceria-based two-phase electrolytes for low temperature (300-600 °C) solid oxide fuel cells. Electrochem Commun 2008;10:302-5.
135. Zhu B. Intermediate temperature proton conducting salt-oxide composites. Solid State Ion 1999;125:397-405.
136. Zhu B. Next generation fuel cell R&D. Int J Energy Res 2006;30:895-903.
137. Maier J. Ionic conduction in space charge regions. Prog Solid State Chem 1995;23:171-263.
138. Schober T. Composites of ceramic high-temperature proton conductors with inorganic compounds. Electrochem Solid-State Lett 2005;8:A199.
139. Huang J, Gao Z, Mao Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrog Energy 2010;35:4270-5.
140. Riess I, Gödickemeier M, Gauckler LJ. Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors. Solid State Ion 1996;90:91-104.
141. Lu Y, Zhu B, Wang J, Zhang Y, Li J. Hybrid power generation system of solar energy and fuel cells: hybrid power generation system. Int J Energy Res 2016;40:717-25.
142. Zhu B, Fan L, Lund P. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl Energy 2013;106:163-75.
143. Zhu B, Ma Y, Wang X, Raza R, Qin H, Fan L. A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte. Electrochem Commun 2011;13:225-7.
144. Zhu B, Raza R, Qin H, Fan L. Single-component and three-component fuel cells. J Power Sources 2011;196:6362-5.
145. Dong X, Tian L, Li J, Zhao Y, Tian Y, Li Y. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-δ-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-δ. J Power Sources 2014;249:270-6.
146. Paydar S, Peng J, Huang L, et al. Performance analysis of LiAl0.5Co0.5O2 nanosheets for intermediate-temperature fuel cells. Int J Hydrog Energy 2021;46:26478-88.
147. Zhou Y, Guan X, Zhou H, et al. Strongly correlated perovskite fuel cells. Nature 2016;534:231-4.
148. Akbar N, Paydar S, Afzal M, et al. Tunning tin-based perovskite as an electrolyte for semiconductor protonic fuel cells. Int J Hydrog Energy 2022;47:5531-40.
149. Dong W, Yaqub A, Janjua NK, Raza R, Afzal M, Zhu B. All in one multifunctional perovskite material for next generation SOFC. Electrochim Acta 2016;193:225-30.
150. Meng Y, Mi Y, Xu F, et al. Low-temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-δ and ionic conductor. J Power Sources 2017;366:259-64.
151. Akbar N, Paydar S, Wu Y. Tuning an ionic-electronic mixed conductor NdBa0.5Sr0.5Co1.5Fe0.5O5+δ for electrolyte functions of advanced fuel cells. Int J Hydrog Energy 2021;46:9847-54.
152. Tu Z, Tian Y, Liu M, et al. Remarkable ionic conductivity in a LZO-SDC composite for low-temperature solid oxide fuel cells. Nanomaterials 2021;11:2277.
153. Shah MY, Lu Y, Mushtaq N, et al. ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells. Energy Mater 2022;2:200031.
154. Lu Y, Zhu B, Shi J, Yun S. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Mater 2021;1:100007.
155. Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 2015;72:141-337.
156. Kang S, Lee J, Cho GY, et al. Scalable fabrication process of thin-film solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte. Int J Hydrog Energy 2020;45:33980-92.
157. Yang Y, Zhang Y, Yan M. A review on the preparation of thin-film YSZ electrolyte of SOFCs by magnetron sputtering technology. Sep Purif Technol 2022;298:121627.
158. Wang B, Cai Y, Xia C, et al. Semiconductor-ionic membrane of LaSrCoFe-oxide-doped ceria solid oxide fuel cells. Electrochimica Acta 2017;248:496-504.
159. Hu E, Jiang Z, Fan L, et al. Junction and energy band on novel semiconductor-based fuel cells. iScience 2021;24:102191.
160. Harboe S, Schreiber A, Margaritis N, Blum L, Guillon O, Menzler N. Manufacturing cost model for planar 5 kWel SOFC stacks at Forschungszentrum Jülich. Int J Hydrog Energy 2020;45:8015-30.
161. Dubois A, Ricote S, Braun RJ. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. J Power Sources 2017;369:65-77.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.