1. Gao W, Li X, Ma M, Fu Y, Jiang J, Mi C. Case study of an electric vehicle battery thermal runaway and online internal short-circuit detection. IEEE Trans Power Electron 2021;36:2452-5.
2. Liao C, Han L, Wang W, et al. Non-flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra-stable cycling and fire-safety lithium metal batteries. Adv Funct Mater 2023;33:2212605.
3. Cho SJ, Yu DE, Pollard TP, et al. Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes. iScience 2020;23:100844.
4. Kim HT, Kang J, Mun J, Oh SM, Yim T, Kim YG. Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries. ACS Sustainable Chem Eng 2016;4:497-505.
5. Hagiwara R, Lee JS. Ionic Liquids for Electrochemical Devices. Electrochemistry 2007;75:23-34.
6. Nakagawa H, Fujino Y, Kozono S, et al. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J Power Sources 2007;174:1021-6.
7. Tang X, Lv S, Jiang K, Zhou G, Liu X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J Power Sources 2022;542:231792.
8. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 2017;117:7190-239.
9. Seong MJ, Yim T. Ionic additives to increase electrochemical utilization of sulfur cathode for Li-S batteries. J Electrochem Sci Technol 2021;12:279-84.
10. Yim T, Kwon MS, Mun J, Lee KT. Room temperature ionic liquid-based electrolytes as an alternative to carbonate-based electrolytes. Isr J Chem 2015;55:586-98.
11. Mun J, Yim T, Choi CY, Ryu JH, Kim YG, Oh SM. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem Solid-State Lett 2010;13:A109.
12. Cha EH, Mun JY, Cho ER, et al. The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery. J Korean Electrochem Soc 2011;14:152-6.
13. Heo K, Im J, Lee JS, et al. High-rate blended cathode with mixed morphology for all-solid-state Li-ion batteries. J Electrochem Sci Technol 2020;11:282-90.
14. Murali A, Sakar M, Priya S, et al. Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: a review. Mater Lett 2022;313:131764.
15. Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011;10:682-6.
16. Liu X, Zheng B, Zhao J, et al. Electrochemo-mechanical effects on structural integrity of ni-rich cathodes with different microstructures in all solid-state batteries. Adv Energy Mater 2021;11:2003583.
17. Paul PP, Chen BR, Langevin SA, Dufek EJ, Nelson Weker J, Ko JS. Interfaces in all solid state Li-metal batteries: a review on instabilities, stabilization strategies, and scalability. Energy Stor Mater 2022;45:969-1001.
18. Yoon K, Kim JJ, Seong WM, Lee MH, Kang K. Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Sci Rep 2018;8:8066.
19. Kato T, Yoshida R, Yamamoto K, et al. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. J Power Sources 2016;325:584-90.
20. Ohta S, Kobayashi T, Seki J, Asaoka T. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 2012;202:332-5.
21. Abe T, Sagane F, Ohtsuka M, Iriyama Y, Ogumi Z. Lithium-Ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte-a key to enhancing the rate capability of lithium-ion batteries. J Electrochem Soc 2005;152:A2151.
22. Wang Q, Chen B, Zhang Q, Lu X, Zhang S. Aluminum deposition from lewis acidic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid ([Bmim Cl/AlCl3]) modified with methyl nicotinate. ChemElectroChem 2015;2:1794-8.
23. Seddon KR. Ionic liquids for clean technology. J Chem Technol Biotechnol 1997;68:351-6.
24. Mun J, Kim S, Yim T, Ryu JH, Kim YG, Oh SM. Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2. J Electrochem Soc 2010;157:A136.
25. Mun J, Yim T, Park K, Ryu JH, Kim YG, Oh SM. Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. J Electrochem Soc 2011;158:A453.
26. Cho E, Mun J, Chae OB, et al. Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries. Electrochem Commun 2012;22:1-3.
27. Chakrapani V, Rusli F, Filler MA, Kohl PA. Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery. J Phys Chem C 2011;115:22048-53.
28. Tobishima S, Morimoto H, Aoki M, et al. Glyme-based nonaqueous electrolytes for rechargeable lithium cells. Electrochim Acta 2004;49:979-87.
29. Carbone L, Di Lecce D, Gobet M, et al. Relevant features of a triethylene glycol dimethyl ether-based electrolyte for application in lithium battery. ACS Appl Mater Interfaces 2017;9:17085-95.
30. Carbone L, Gobet M, Peng J, et al. Comparative study of ether-based electrolytes for application in lithium-sulfur battery. ACS Appl Mater Interfaces 2015;7:13859-65.
31. Kazemiabnavi S, Zhang Z, Thornton K, Banerjee S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J Phys Chem B 2016;120:5691-702.
32. De vos N, Maton C, Stevens CV. Electrochemical stability of ionic liquids: general influences and degradation mechanisms. Chemelectroche 2014;1:1258-70.
33. Zhao C, Burrell G, Torriero AA, et al. Electrochemistry of room temperature protic ionic liquids. J Phys Chem B 2008;112:6923-36.
34. Zhao L, Yamaki J, Egashira M. Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries. J Power Sources 2007;174:352-8.
35. Sugimoto T, Atsumi Y, Kikuta M, Ishiko E, Kono M, Ishikawa M. Ionic liquid electrolyte systems based on bis(fluorosulfonyl)imide for lithium-ion batteries. J Power Sources 2009;189:802-5.
36. An Y, Zuo P, Du C, et al. Effects of VC-LiBOB binary additives on SEI formation in ionic liquid-organic composite electrolyte. RSC Adv 2012;2:4097-102.
37. El Ouatani L, Dedryvère R, Siret C, et al. The effect of vinylene carbonate additive on surface film formation on both electrodes in li-ion batteries. J Electrochem Soc 2009;156:A103.
38. Choi NS, Yew KH, Lee KY, Sung M, Kim H, Kim SS. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 2006;161:1254-9.
39. Lewandowski A, Świderska-mocek A. Properties of the lithium and graphite-lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide. J Power Sources 2009;194:502-7.
40. Fu Y, Chen C, Qiu C, Ma X. Vinyl ethylene carbonate as an additive to ionic liquid electrolyte for lithium ion batteries. J Appl Electrochem 2009;39:2597-603.
41. Sano H, Sakaebe H, Matsumoto H. Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid. J Electrochem Soc 2011;158:A316.
42. Seki S, Mita Y, Tokuda H, et al. Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochem Solid-State Lett 2007;10:A237.
43. Mun J, Yim T, Park JH, et al. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries. Sci Rep 2014;4:5802.
44. Hofmann A, Migeot M, Arens L, Hanemann T. Investigation of ternary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide, ethylene carbonate and lithium bis(trifluoromethanesulfonyl)azanide. Int J Mol Sci 2016;17:670.
45. Kruusma J, Tõnisoo A, Pärna R, et al. The electrochemical behavior of 1-ethyl-3-methyl imidazolium tetracyanoborate visualized by in situ X-ray photoelectron spectroscopy at the negatively and positively polarized micro-mesoporous carbon electrode. J Electrochem Soc 2017;164:A3393-402.
46. Min GH, Yim T, Lee HY, et al. Synthesis and properties of ionic liquids:imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 2006;27:847-52.
47. Yim TE, Lee HY, Kim HJ, et al. Synthesis and properties of pyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide ionic liquids with allyl substituents. Bull Korean Chem Soc 2007;28:1567-72.
48. Yim T, Choi CY, Mun J, Oh SM, Kim YG. Synthesis and properties of acyclic ammonium-based ionic liquids with allyl substituents as electrolytes. Molecules 2009;14:1840-51.
49. Nanjundiah C, Mcdevitt SF, Koch VR. Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 1997;144:3392-7.
50. Furuya R, Tachikawa N, Yoshii K, Katayama Y, Miura T. Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. J Electrochem Soc 2015;162:H634-7.
51. Furuya R, Katayama Y, Miura T. Deposition and dissolution of lithium through lithium phosphorus oxynitride thin film in some ionic liquids. ECS Trans 2014;64:453-9.
52. Zuo TT, Walther F, Ahmed S, et al. Formation of an artificial cathode-electrolyte interphase to suppress interfacial degradation of Ni-rich cathode active material with sulfide electrolytes for solid-state batteries. ACS Energy Lett 2023;8:1322-9.
53. Liu X, Cheng Y, Su Y, et al. Revealing the surface-to-bulk degradation mechanism of nickel-rich cathode in sulfide all-solid-state batteries. Energy Stor Mater 2023;54:713-23.
54. Kim KT, Kwon TY, Song YB, et al. Wet-slurry fabrication using PVdF-HFP binder with sulfide electrolytes via synergetic cosolvent approach for all-solid-state batteries. Chem Eng J 2022;450:138047.
55. Oh DY, Nam YJ, Park KH, et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater 2015;5:1500865.
56. Oh DY, Nam YJ, Park KH, et al. Slurry-fabricable Li+-conductive polymeric binders for practical all-solid-state lithium-ion batteries enabled by solvate ionic liquids. Adv Energy Mater 2019;9:1802927.
57. Cao Y, Lou S, Sun Z, et al. Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chem Eng J 2020;382:123046.
58. Yi J, Yan C, Zhou D, Fan L. A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries. Nano Res 2023;16:8411-6.
59. Zheng B, Zhu J, Wang H, et al. Stabilizing Li10SnP2S12/Li interface via an in Situ formed solid electrolyte interphase layer. ACS Appl Mater Interfaces 2018;10:25473-82.
60. Kim K, Park J, Jeong G, et al. Rational design of a composite electrode to realize a high-performance all-solid-state battery. ChemSusChem 2019;12:2637-43.
61. Cho W, Park J, Kim K, Yu JS, Jeong G. Sulfide-compatible conductive and adhesive glue-like interphase engineering for sheet-type all-solid-state battery. Small 2021;17:e1902138.
62. Wang Z, Zhang L, Shang X, et al. Enhanced electrochemical performance enabled by ionic-liquid-coated Na3SbS4 electrolyte encapsulated in flexible filtration membrane. Chem Eng J 2022;428:132094.
63. Li Y, Halacoglu S, Shreyas V, et al. Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries. Chem Eng J 2022;434:134679.
64. An T, Jia H, Peng L, Xie J. Material and interfacial modification toward a stable room-temperature solid-state Na-S battery. ACS Appl Mater Interfaces 2020;12:20563-9.
65. Tao B, Ren C, Li H, et al. Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries. Adv Funct Materials 2022;32:2203551.
66. Zhang X, Wang S, Xue C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv Mater 2019;31:e1806082.
67. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem 1998;459:29-34.
68. Fuller J, Breda AC, Carlin RT. Ionic liquid-polymer gel electrolytes. J Electrochem Soc 1997;144:L67.
69. Hashmi SA, Bhat MY, Singh MK, Sundaram NTK, Raghupathy BPC, Tanaka H. Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 2016;20:2817-26.
70. Kim H, Ding Y, Kohl PA. LiSICON - ionic liquid electrolyte for lithium ion battery. J Power Sources 2012;198:281-6.
71. Matsumoto H, Sakaebe H, Tatsumi K, Kikuta M, Ishiko E, Kono M. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J Power Sources 2006;160:1308-13.
72. Guerfi A, Duchesne S, Kobayashi Y, Vijh A, Zaghib K. LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J Power Sources 2008;175:866-73.
73. Sugimoto T, Kikuta M, Ishiko E, Kono M, Ishikawa M. Ionic liquid electrolytes compatible with graphitized carbon negative without additive and their effects on interfacial properties. J Power Sources 2008;183:436-40.
74. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Eng 2007;46:7778-81.
75. Zhu Y, He X, Mo Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl Mater Interfaces 2015;7:23685-93.
76. Teranishi T, Ishii Y, Hayashi H, Kishimoto A. Lithium ion conductivity of oriented Li0.33La0.56TiO3 solid electrolyte films prepared by a sol-gel process. Solid State Ionics 2016;284:1-6.
77. Sugata S, Saito N, Watanabe A, et al. Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes. Solid State Ion 2018;319:285-90.
78. Xiong S, Liu Y, Jankowski P, et al. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater 2020;30:2001444.
79. Pervez SA, Kim G, Vinayan BP, et al. Overcoming the interfacial limitations imposed by the solid-solid interface in solid-state batteries using ionic liquid-based interlayers. Small 2020;16:e2000279.
80. Chen Z, Gao X, Kim JK, Kim GT, Passerini S. Quasi-solid-state lithium metal batteries using the LiNi0.8Co0.1Mn0.1O2-Li1+ xAlxTi2-x(PO4)3 composite positive electrode. ACS Appl Mater Interfaces 2021;13:53810-7.
81. Song X, Wang C, Chen J, et al. Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv Funct Mater 2022;32:2108706.
82. Song X, Zhang H, Jiang D, et al. Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li1.3Al0.3Ti1.7(PO4)3 nanoparticles for highly-safe lithium metal batteries. Electrochim Acta 2021;368:137581.
83. Liu Z, Borodin A, Endres F. Ionic liquid and polymer coated garnet solid electrolytes for high-energy solid-state lithium metal batteries. Energy Tech 2022;10:2270023.
84. Yu D, Ma Z, Liu Z, et al. Optimizing interfacial wetting by ionic liquid for high performance solid-state lithium metal batteries operated at ambient temperature. Chem Eng J 2023;457:141043.
85. Fuchs T, Mogwitz B, Otto SK, Passerini S, Richter FH, Janek J. Working principle of an ionic liquid interlayer during pressureless lithium stripping on Li6.25Al0.25La3Zr2O12(LLZO) garnet-type solid electrolyte. Batter Supercaps 2021;4:1145-55.
86. Cheng EJ, Kimura T, Shoji M, Ueda H, Munakata H, Kanamura K. Ceramic-based flexible sheet electrolyte for Li batteries. ACS Appl Mater Interfaces 2020;12:10382-8.
87. Yoon H, Howlett PC, Best AS, Forsyth M, Macfarlane DR. Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J Electrochem Soc 2013;160:A1629-37.
88. Ochel A, Di Lecce D, Wolff C, Kim G, Carvalho DV, Passerini S. Physicochemical and electrochemical investigations of the ionic liquid N-butyl -N-methyl-pyrrolidinium 4,5-dicyano-2-(trifluoromethyl)imidazole. Electrochim Acta 2017;232:586-95.
89. Egashira M, Tanaka-nakagawa M, Watanabe I, Okada S, Yamaki J. Charge-discharge and high temperature reaction of LiCoO2 in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation. J Power Sources 2006;160:1387-90.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.