1. Yuan F, Zhang W, Zhang D, et al. Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. Nanoscale 2021;13:5965-84.
2. Wu Y, Zhao H, Wu Z, et al. Rational design of carbon materials as anodes for potassium-ion batteries. Energy Stor Mater 2021;34:483-507.
3. Yang M, Kong Q, Feng W, Yao W. N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon 2021;176:71-82.
4. Yang M, Kong Q, Feng W, Yao W, Wang Q. Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy 2022;4:45-59.
5. McCulloch WD, Ren X, Yu M, Huang Z, Wu Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Inter 2015;7:26158-66.
6. Han Y, Li T, Li Y, et al. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Stor Mater 2019;20:46-54.
7. Ma L, Lv Y, Wu J, et al. Recent advances in anode materials for potassium-ion batteries: a review. Nano Res 2021;14:4442-70.
8. An Y, Fei H, Zeng G, et al. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J Power Sources 2018;378:66-72.
9. Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries. J Am Chem Soc 2015;137:11566-9.
10. Han C, Han K, Wang X, et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 2018;10:6820-6.
11. Zeng S, Chen X, Xu R, et al. Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy 2020;73:104807.
12. Tao S, Xu W, Zheng J, et al. Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon 2021;178:233-42.
13. Wu X, Chen Y, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 2019;9:1900343.
14. Xu H, Rosa AL, Frauenheim T, Zhang RQ. N-doped ZnO nanowires: surface segregation, the effect of hydrogen passivation and applications in spintronics. Phys Stat Sol 2010;247:2195-201.
15. Zhu Y, Wang Y, Wang Y, Xu T, Chang P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022;4:1182-213.
16. Ma C, Shao X, Cao D. Nitrogen-doped graphenenanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 2012;22:8911-15.
17. Liu W, Deng X, Cai S. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites. AIP Adv 2016;6:075103.
18. Wang Z, Selbach SM, Grande T. Van der Waals density functional study of the energetics of alkali metal intercalation in graphite. RSC Adv 2014;4:4069-79.
19. Luo P, Zheng C, He J, et al. Structural engineering in graphite-based metal-ion batteries. Adv Funct Mater 2022;32:2107277.
20. Li X, Li J, Ma L, et al. Graphite anode for potassium ion batteries: current status and perspective. Energy Environ Mater 2022;5:458-69.
21. Wang D, Zhang J, Dong Y, et al. Progress on graphitic carbon materials for potassium- based energy storage. New Carbon Mater 2021;36:435-48.
22. Costard E, Bois P, Marcadet X, Nedelcu A. QWIP and 3rd generation IR imagers. Infrared Technol Appl 2005 ;5783:728.
23. Dimiev AM, Shukhina K, Behabtu N, Pasquali M, Tour JM. Stage transitions in graphite intercalation compounds: role of the graphite structure. J Phys Chem C 2019;123:19246-53.
24. Xing Z, Qi Y, Jian Z, Ji X. Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. ACS Appl Mater Inter 2017;9:4343-51.
25. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.
26. Lei K, Li F, Mu C, et al. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ Sci 2017;10:552-7.
27. Komaba S, Hasegawa T, Dahbi M, Kubota K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem Commun 2015;60:172-5.
28. Sun Y, Xiao H, Li H, et al. Nitrogen/Oxygen co-doped hierarchically porous carbon for high-performance potassium storage. Chemistry 2019;25:7359-65.
29. Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials. Nano Lett 2015;15:7671-7.
30. Li J, Yi Y, Zuo X, et al. Graphdiyne/Graphene/Graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano 2022;16:3163-72.
31. Yuan F, Lei Y, Wang H, et al. Pseudo-capacitance reinforced modified graphite for fast-charging potassium-ion batteries. Carbon 2021;185:48-56.
32. Capone I, Aspinall J, Lee HJ, Xiao AW, Ihli J, Pasta M. A red phosphorus-graphite composite as anode material for potassium-ion batteries. Mater Today Energy 2021;21:100840.
33. Ma G, Huang K, Ma J, Ju Z, Xing Z, Zhuang Q. Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 2017;5:7854-61.
34. Lee B, Kim M, Kim S, et al. High capacity adsorption - dominated potassium and sodium ion storage in activated crumpled graphene. Adv Energy Mater 2020;10:1903280.
35. Li L, Liu L, Hu Z, et al. Understanding high-rate K+-solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew Chem Int Ed 2020;59:12917-24.
36. Vaalma C, Giffin GA, Buchholz D, Passerini S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J Electrochem Soc 2016;163:A1295-9.
37. Liu Y, Dai H, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv Energy Mater 2019;9:1901379.
38. Jian Z, Xing Z, Bommier C, Li Z, Ji X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater 2016;6:1501874.
39. He X, Liao J, Tang Z, et al. Highly disordered hard carbon derived from skimmed cotton as a high-performance anode material for potassium-ion batteries. J Power Sources 2018;396:533-41.
40. Zhang Y, Yang L, Tian Y, et al. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater Chem Phys 2019;229:303-9.
41. Stevens DA, Dahn JR. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J Electrochem Soc 2000;147:4428.
42. Kim J, Lee G, Lau VW, et al. A microstructural investigation into Na-ion storage behaviors of cellulose-based hard carbons for Na-ion batteries. J Phys Chem C 2021;125:14559-66.
43. Bommier C, Surta TW, Dolgos M, Ji X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett 2015;15:5888-92.
44. Li W, Zhang R, Chen Z, et al. Microstructure-dependent K+ storage in porous hard carbon. Small 2021;17:e2100397.
45. Wu Z, Wang L, Huang J, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochimica Acta 2019;306:446-53.
46. Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon. Small 2022;18:e2107113.
47. Wang X, Han K, Qin D, et al. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 2017;9:18216-22.
48. Bin DS, Chi ZX, Li Y, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 2017;139:13492-8.
49. Chen C, Wang Z, Zhang B, et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Stor Mater 2017;8:161-8.
50. Zhang Y, Pan A, Ding L, et al. Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Inter 2017;9:3624-33.
51. Lu Y, Li D, Lyu C, et al. High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Appl Surf Sci 2019;496:143717.
52. Gao Y, Ru Q, Zheng M, et al. Recovery of kitchen bio-waste from spent black tea as hierarchical biomorphic carbon electrodes for ultra-long lifespan potassium-ion storage. Appl Surf Sci 2021;555:149675.
53. Chen C, Wu M, Wang Y, Zaghib K. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J Power Sources 2019;444:227310.
54. Li J, Kaur AP, Meier MS, Cheng Y. Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. J Appl Electrochem 2014;44:179-87.
55. Tang Y, Zhao Y, Burkert SC, Ding M, Ellis JE, Star A. Efficient separation of nitrogen-doped carbon nanotube cups. Carbon 2014;80:583-90.
56. Tang Y, Burkert SC, Zhao Y, Saidi WA, Star A. The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J Phys Chem C 2013;117:25213-21.
57. Gabaudan V, Monconduit L, Stievano L, Berthelot R. Snapshot on negative electrode materials for potassium-ion batteries. Front Energy Res 2019;7:46.
58. Sato M. Elastic and plastic deformation of carbon nanotubes. Procedia Eng 2011;14:2366-72.
59. Zhao X, Xiong P, Meng J, Liang Y, Wang J, Xu Y. High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries. J Mater Chem A 2017;5:19237-44.
60. Cao B, Zhang Q, Liu H, et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater 2018;8:1801149.
61. Wang G, Xiong X, Xie D, et al. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J Mater Chem A 2018;6:24317-23.
62. Sun J, Ma L, Sun H, et al. Design of free-standing porous carbon fibers anode with high-efficiency potassium-ion storage. Chem Eng J 2023;455:140902.
63. Wu Y, Wu Z, Yue L, et al. Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Appl Mater Inter 2021;13:30693-702.
64. Chen M, Wang W, Liang X, et al. Sulfur/Oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv Energy Mater 2018;8:1800171.
65. Hu X, Zhong G, Li J, et al. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci 2020;13:2431-40.
66. Wen J, Xu L, Wang J, et al. Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries. J Power Sources 2020;474:228491.
67. Tian S, Jiang Q, Cai T, et al. Graphitized electrospun carbon fibers with superior cyclability as a free-standing anode of potassium-ion batteries. J Power Sources 2020;474:228479.
68. Ma H, Qi X, Peng D, et al. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. ChemistrySelect 2019;4:11488-95.
69. Tao L, Yang Y, Wang H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Stor Mater 2020;27:212-25.
70. Wang Y, Yuan F, Li Z, Zhang D, Yu Q, Wang B. Heteroatom-doped carbon anode materials for potassium-ion batteries: from mechanism, synthesis to electrochemical performance. APL Mater 2022;10:030902.
71. Xu Y, Zhang C, Zhou M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun 2018;9:1720.
72. Zhang M, Shoaib M, Fei H, et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv Energy Mater 2019;9:1901663.
73. Tong H, Wang C, Lu J, et al. Energetic metal-organic frameworks derived highly nitrogen-doped porous carbon for superior potassium storage. Small 2020;16:e2002771.
74. Chen S, Feng Y, Wang J, Zhang E, Yu X, Lu B. Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Sci China Mater 2021;64:547-56.
75. Zhao L, Yang H, He F, et al. Biomimetic N-doped sea-urchin-structured porous carbon for the anode material of high-energy-density potassium-ion batteries. Electrochim Acta 2021;388:138565.
76. Gong J, Zhao G, Feng J, et al. Controllable phosphorylation strategy for free-standing phosphorus/nitrogen cofunctionalized porous carbon monoliths as high-performance potassium ion battery anodes. ACS Nano 2020;14:14057-69.
77. Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 2018;30:1700104.
78. Lin X, Huang J, Zhang B. Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 2019;143:138-46.
79. Share K, Cohn AP, Carter R, Rogers B, Pint CL. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016;10:9738-44.
80. Shang Y, Duan X, Wang S, Yue Q, Gao B, Xu X. Carbon-based single atom catalyst: synthesis, characterization, DFT calculations. Chin Chem Lett 2022;33:663-73.
81. Adekoya D, Qian S, Gu X, et al. DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nanomicro Lett 2020;13:13.
82. Liu Q, Hu Z, Chen M, et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus prussian blue analogs. Adv Funct Mater 2020;30:1909530.
83. Xiao Z, Meng J, Xia F, et al. K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries. Energy Environ Sci 2020;13:3129-37.
84. Zhao L, Zhang T, Zhao H, Hou Y. Polyanion-type electrode materials for advanced sodium-ion batteries. Mater Today Nano 2020;10:100072.
85. Chen M, Liu Q, Zhang Y, Xing G, Chou SL, Tang Y. Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. J Mater Chem A 2020;8:16061-80.
86. Liang Y, Luo C, Wang F, et al. An organic anode for high temperature potassium-ion batteries. Adv Energy Mater 2019;9:1802986.
87. Deng Q, Pei J, Fan C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy 2017;33:350-5.
88. Luo Z, Liu L, Ning J, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew Chem Int Ed 2018;57:9443-6.
89. Wu Y, Jiang Y, Shi J, Gu L, Yu Y. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 2017;13:1700129.
90. Li Y, Wang H, Wang L, et al. Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 2019;15:e1804539.
91. Cui Y, Liu W, Feng W, et al. Controlled design of well-dispersed ultrathin MoS2 nanosheets inside hollow carbon skeleton: toward fast potassium storage by constructing spacious “houses” for K ions. Adv Funct Mater 2020;30:1908755.
92. Wu Y, Hu S, Xu R, et al. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett 2019;19:1351-8.
93. Wang Q, Zhao X, Ni C, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C 2017;121:12652-7.
94. Chen KT, Tuan HY. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 2020;14:11648-61.
95. Xia M, Chen B, Gu F, et al. Ti3C2Tx MXene nanosheets as a robust and conductive tight on Si anodes significantly enhance electrochemical lithium storage performance. ACS Nano 2020;14:5111-20.
96. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun 2019;101:68-72.
97. Zhang L, Li Y, Zhang S, et al. Non-newtonian fluid state K-Na alloy for a stretchable energy storage device. Small Methods 2019;3:1900383.
98. Eftekhari A. Low voltage anode materials for lithium-ion batteries. Energy Stor Mater 2017;7:157-80.
99. Kim H, Kim JC, Bianchini M, Seo D, Rodriguez-garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 2018;8:1702384.
100. Liu Y, Zhang N, Jiao L, Tao Z, Chen J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 2015;25:214-20.
101. Yao Q, Zhu C. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv Funct Mater 2020;30:2005209.
102. Tian S, Guan D, Lu J, et al. Synthesis of the electrochemically stable sulfur-doped bamboo charcoal as the anode material of potassium-ion batteries. J Power Sources 2020;448:227572.
103. Yang G, Ilango PR, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries. Small 2019;15:e1900628.
104. Liang S, Cheng Y, Zhu J, Xia Y, Müller-buschbaum P. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes. Small Methods 2020;4:2000218.
105. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 2018;28:1703857.
106. Yang GZ, Chen YF, Feng BQ, et al. Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy Environ Sci 2023;16:1540-7.
107. Wang L, Zhao Y, Cao L, et al. CoS nanoparticle encapsulated S-doped carbon nanofiber/nanotube hybrid grown on exfoliated graphite for long-lifespan and high-rate potassium ion batteries. Appl Surf Sci 2022;603:154370.
108. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:e1903194.
109. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018;10:13236-41.
110. Gabaudan V, Berthelot R, Stievano L, Monconduit L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J Phys Chem C 2018;122:18266-73.
111. Shi Y, Wang L, Zhou D, Wu T, Xiao Z. A flower-like Sb4O5Cl2 cluster-based material as anode for potassium ion batteries. Appl Surf Sci 2022;583:152509.
112. Sultana I, Rahman MM, Mateti S, Ahmadabadi VG, Glushenkov AM, Chen Y. K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 2017;9:3646-54.
113. Liu Q, Fan L, Ma R, et al. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun 2018;54:11773-6.
114. Zhang W, Miao W, Liu X, Li L, Yu Z, Zhang Q. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus Co-doped mesoporous carbon nanofibers as an anode material. J Alloys Compd 2018;769:141-8.
115. Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 2019;105:106493.
116. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018;12:12932-40.
117. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Inter 2019;11:27973-81.
118. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;58:14578-83.
119. He XD, Liu ZH, Liao JY, et al. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A 2019;7:9629-37.
120. Sultana I, Rahman MM, Liu J, et al. Antimony-carbon nanocomposites for potassium-ion batteries: insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J Power Sources 2019;413:476-84.
121. Luo W, Li F, Gaumet J, et al. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv Energy Mater 2018;8:1703237.
122. Huang Y, Wang Z, Jiang Y, et al. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv Sci 2018;5:1800613.
123. Yi Z, Qian Y, Tian J, Shen K, Lin N, Qian Y. Self-templating growth of Sb2Se3@C microtube: a convention-alloying-type anode material for enhanced K-ion batteries. J Mater Chem A 2019;7:12283-91.
124. Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020;14:1018-26.
125. Wang T, Shen D, Liu H, Chen H, Liu Q, Lu B. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl Mater Inter 2020;12:57907-15.
126. Yi Z, Jiang S, Du Y, et al. Coordinatively and spatially coconfining high-loading atomic Sb in sulfur-rich 2D carbon matrix for fast K+ diffusion and storage. ACS Mater Lett 2021;3:790-8.
127. Nguyen TH, Man MT, Do HM, Nguyen VV. Magnetic properties and electronic structure of the Sb-doped MnBi from DFT calculations. Solid State Commun 2021;336:114385.
128. Zhao M, Zhao Q, Qiu J, Xue H, Pang H. Tin-based nanomaterials for electrochemical energy storage. RSC Adv 2016;6:95449-68.
129. Huang B, Pan Z, Su X, An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources 2018;395:41-59.
130. Nita C, Fullenwarth J, Monconduit L, et al. Understanding the Sn loading impact on the performance of mesoporous carbon/Sn-based nanocomposites in Li-ion batteries. ChemElectroChem 2018;5:3249-57.
131. Liu Y, Zhang N, Jiao L, Chen J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater 2015;27:6702-7.
132. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun 2016;52:9279-82.
133. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater 2017;29:1700519.
134. Li Z, Ding J, Mitlin D. Tin and Tin compounds for sodium ion battery anodes: phase transformations and performance. ACC Chem Res 2015;48:1657-65.
135. Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater 2019;29:1903496.
136. Han X, Liu Y, Jia Z, et al. Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett 2014;14:139-47.
137. Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc 2017;164:A2360-7.
138. Gabaudan V, Berthelot R, Sougrati MT, Lippens P, Monconduit L, Stievano L. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. J Mater Chem A 2019;7:15262-70.
139. Huang Z, Chen Z, Ding S, Chen C, Zhang M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater Lett 2018;219:19-22.
140. Ge X, Liu S, Qiao M, et al. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 2019;131:14720-5.
141. Qin J, He C, Zhao N, et al. Graphene networks anchored with sn@graphene as lithium ion battery anode. ACS Nano 2014;8:1728-38.
142. Huang K, Xing Z, Wang L, et al. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 2018;6:434-42.
143. Yang Y, Li D, Zhang J, et al. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett 2019;256:126613.
144. Li D, Zhang Y, Sun Q, et al. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Stor Mater 2019;23:367-74.
145. Du Y, Yi Z, Chen B, et al. Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. J Energy Chem 2022;66:413-21.
146. Li C, Bi AT, Chen HL, et al. Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material. J Mater Chem A 2021;9:5740-50.
147. Yamamoto T, Nohira T. Tin negative electrodes using an FSA-based ionic liquid electrolyte: improved performance of potassium secondary batteries. Chem Commun 2020;56:2538-41.
148. Liu C, Han X, Cao Y, Zhang S, Zhang Y, Sun J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Stor Mater 2019;20:343-72.
149. Sun J, Zheng G, Lee HW, et al. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett 2014;14:4573-80.
150. Sun J, Lee HW, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat Nanotechnol 2015;10:980-5.
151. Li W, Yang Z, Li M, et al. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett 2016;16:1546-53.
152. Sangster JM. K-P (potassium-phosphorus) system. J Phase Equilib Diffus 2010;31:68-72.
153. Park C, Sohn H. Black phosphorus and its composite for lithium rechargeable batteries. Adv Mater 2007;19:2465-8.
154. Zhu Y, Wen Y, Fan X, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015;9:3254-64.
155. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A 2017;5:23506-12.
156. Huang X, Liu D, Guo X, Sui X, Qu D, Chen J. Phosphorus/Carbon composite anode for potassium-ion batteries: insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain Chem Eng 2018;6:16308-14.
157. Wu X, Zhao W, Wang H, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources 2018;378:460-7.
158. Xiong P, Bai P, Tu S, et al. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018;14:e1802140.
159. Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 2017;139:3316-9.
160. Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett 2020;16:89-98.
161. Li WJ, Chou SL, Wang JZ, Liu HK, Dou SX. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett 2013;13:5480-4.
162. Sun J, Lee H, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Stor Mater 2016;4:130-6.
163. Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci 2019;6:1801354.
164. Liu D, Huang X, Qu D, et al. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018;52:1-10.
165. Fang K, Liu D, Xiang X, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design. Nano Energy 2020;69:104451.
166. Bai J, Xi B, Mao H, et al. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 2018;30:e1802310.
167. Wang H, Wang L, Wang L, et al. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chemistry 2018;24:13897-902.
168. Xu L, Guo W, Zeng L, et al. V3Se4 embedded within N/P Co-doped carbon fibers for sodium/potassium ion batteries. Chem Eng J 2021;419:129607.
169. Zhao X, Huang R, Wang T, Dai X, Wei S, Ma Y. Steady semiconducting properties of monolayer PtSe2 with non-metal atom and transition metal atom doping. Phys Chem Chem Phys 2020;22:5765-73.
170. Zhang Z, Khurram M, Sun Z, Yan Q. Uniform tellurium doping in black phosphorus single crystals by chemical vapor transport. Inorg Chem 2018;57:4098-103.
171. Viti L, Politano A, Zhang K, Vitiello MS. Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale 2019;11:1995-2002.
172. Hussain F, Imran M, Rana AM, et al. Tailoring magnetic characteristics of phosphorene by the doping of Ce and Ti: a DFT study. Phys E Low Dimens Syst Nanostruct 2019;106:352-6.
173. Duan JP, Zhang JM, Wei XM, Huang YH. Electronic, magnetic and optical properties of blue phosphorene doped with Y, Zr, Nb and Mo: a first-principles study. Thin Solid Films 2021;720:138523.
174. Zhao W, Xu X, Wang L, et al. Boosting lifespan of conversion-reaction anodes for full/half potassium-ion batteries via multi-dimensional carbon nano-architectures confinement effect. J Energy Chem 2022;75:55-65.
175. Sun X, Zeng S, Man R, et al. Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale 2021;13:10385-92.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.