REFERENCES

1. Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013;135:1167-76.

2. He X, Wang J, Jia H, et al. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries. J Power Sources 2015;293:306-11.

3. Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ 2016;1:18-42.

4. Pham HQ, Hwang EH, Kwon YG, Song SW. Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates. Chem Commun 2019;55:1256-8.

5. Ma X, Zhang P, Zhao H, et al. LiCoO2/graphite cells with localized high concentration carbonate electrolytes for higher energy density. Liquids 2021;1:60-74.

6. Kang Y, Wang J, Wang M, et al. Multifunctional fluoroethylene carbonate for improving high-temperature performance of LiNi0.8Mn0.1Co0.1O2||SiOx@Graphite lithium-ion batteries. ACS Appl Energy Mater 2020;3:9989-10000.

7. Qian Y, Hu S, Zou X, et al. How electrolyte additives work in Li-ion batteries. Energy Stor Mater 2019;20:208-15.

8. Kang Y, Wang J, Du L, et al. Overcharge investigations of LiCoO2/graphite lithium ion batteries with different electrolytes. ACS Appl Energy Mater 2019;2:8615-24.

9. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 2004;104:4303-417.

10. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

11. Fan X, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018;4:174-85.

12. Kim H, Lim K, Yoon G, et al. Exploiting lithium-ether co-intercalation in graphite for high-power lithium-ion batteries. Adv Energy Mater 2017;7:1700418.

13. Jache B, Binder JO, Abe T, Adelhelm P. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. Phys Chem Chem Phys 2016;18:14299-316.

14. Yamada Y, Usui K, Chiang CH, Kikuchi K, Furukawa K, Yamada A. General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces 2014;6:10892-9.

15. Ren X, Zou L, Cao X, et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019;3:1662-76.

16. Wu Z, Li R, Zhang S, et al. Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 2023;9:650-64.

17. Cao X, Ren X, Zou L, et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat Energy 2019;4:796-805.

18. Niu C, Lee H, Chen S, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat Energy 2019;4:551-9.

19. Jiang LL, Yan C, Yao YX, Cai W, Huang JQ, Zhang Q. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries. Angew Chem Int Ed 2021;60:3402-6.

20. Xia D, Kamphaus EP, Hu A, et al. Design criteria of dilute ether electrolytes toward reversible and fast intercalation chemistry of graphite anode in Li-ion batteries. ACS Energy Lett 2023;8:1379-89.

21. Chen S, Yu Z, Gordin ML, Yi R, Song J, Wang D. A fluorinated ether electrolyte enabled high performance prelithiated graphite/sulfur batteries. ACS Appl Mater Interfaces 2017;9:6959-66.

22. Kim H, Yoon G, Lim K, Kang K. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chem Commun 2016;52:12618-21.

23. Ma P, Mirmira P, Eng PJ, et al. Co-intercalation-free ether electrolytes for graphitic anodes in lithium-ion batteries. Energy Environ Sci 2022;15:4823-35.

24. Liu S, Mao J, Zhang L, Pang WK, Du A, Guo Z. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv Mater 2021;33:e2006313.

25. Xu D, Kang Y, Wang J, et al. Exploring synergetic effects of vinylene carbonate and 1,3-propane sultone on LiNi0.6Mn0.2Co0.2O2/graphite cells with excellent high-temperature performance. J Power Sources 2019;437:226929.

26. Zhao H, Qian Y, Luo G, et al. Cathode-anode reaction products interplay enabling high performance of LiNi0.8Co0.1Mn0.1O2/artificial graphite pouch batteries at elevated temperature. J Power Sources 2021;514:230583.

27. Zhao H, Wang J, Shao H, Xu K, Deng Y. Gas generation mechanism in Li-metal batteries. Energy Environ Mater 2022;5:327-36.

28. Teng X, Zhan C, Bai Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes. ACS Appl Mater Interfaces 2015;7:22751-5.

29. Chen GF, Savateev A, Song Z, et al. Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C-N coupling reactions. Angew Chem Int Ed 2022;61:e202203170.

30. Zhao H, Yu X, Li J, et al. Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. J Mater Chem A 2019;7:8700-22.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/