REFERENCES
1. Crawford AJ, Huang Q, Kintner-meyer MC, et al. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations. J Power Sources 2018;380:185-93.
2. Bi Z, Guo X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater 2022;2:200011.
3. Shin H, Baek M, Gupta A, Char K, Manthiram A, Choi JW. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv Energy Mater 2020;10:2001456.
4. Heidari AA, Mahdavi H. Recent development of polyolefin-based microporous separators for Li-Ion batteries: a review. Chem Rec 2020;20:570-95.
5. Duan J, Tang X, Dai H, et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem Energy Rev 2020;3:1-42.
6. Le Mong A, Kim D. Acceleration of selective lithium ion transport of PAES-g-2PEG self-assembled flexible solid-state electrolytes for lithium secondary batteries. Energy Stor Mater 2022;47:394-407.
7. Lucero M, Qiu S, Feng Z. In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques. Carbon Energy 2021;3:762-83.
8. Li S, Zhang W, Zheng J, Lv M, Song H, Du L. Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv Energy Mater 2021;11:2000779.
9. Samson AJ, Hofstetter K, Bag S, Thangadurai V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 2019;12:2957-75.
10. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 2014;43:4714-27.
11. Ye L, Li X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021;593:218-22.
12. Lewis JA, Cortes FJQ, Boebinger MG, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 2019;4:591-9.
13. Xie H, Yang C, Fu KK, et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv Energy Mater 2018;8:1703474.
14. Xu R, Xia X, Zhang S, Xie D, Wang X, Tu J. Interfacial challenges and progress for inorganic all-solid-state lithium batteries. Electrochimica Acta 2018;284:177-87.
15. Plylahan N, Kerner M, Lim D, Matic A, Johansson P. Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application. Electrochimica Acta 2016;216:24-34.
16. Montanino M, Moreno M, Carewska M, et al. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sources 2014;269:608-15.
17. Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater 2020;19:552-8.
18. Francis CFJ, Kyratzis IL, Best AS. Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater 2020;32:e1904205.
19. Jung HY, Mandal P, Jo G, et al. Modulating ion transport and self-assembly of polymer electrolytes via end-group chemistry. Macromolecules 2017;50:3224-33.
20. Li C, Xue P, Chen L, Liu J, Wang Z. Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries. Compos Part B: Eng 2022;234:109729.
21. Chopade SA, Au JG, Li Z, Schmidt PW, Hillmyer MA, Lodge TP. Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation. ACS Appl Mater Interfaces 2017;9:14561-5.
22. Le Mong A, Shi QX, Jeon H, Ye YS, Xie XL, Kim D. Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications. Adv Funct Mater 2021;31:2008586.
23. Li S, Zhang SQ, Shen L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv Sci 2020;7:1903088.
24. Li L, Wang M, Wang J, et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. J Mater Chem A 2020;8:8033-40.
25. Li Z, Li T, Deng Y, et al. 3D porous PTFE membrane filled with PEO-based electrolyte for all solid-state lithium-sulfur batteries. Rare Met 2022;41:2834-43.
26. Hu J, He P, Zhang B, Wang B, Fan L. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Stor Mater 2020;26:283-9.
27. Seo Y, Jung Y, Park M, Kim D. Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries. J Membr Sci 2020;603:117995.
28. Ahn Y, Kim D. Ultra-low vanadium ion permeable electrolyte membrane for vanadium redox flow battery by pore filling of PTFE substrate. Energy Stor Mater 2020;31:105-14.
29. Jeon H, Kim D. Simultaneous establishment of high conductivity and mechanical stability via pore-filling of porous PTFE substrate with poly(ethylene glycol) and ionic liquid for lithium secondary battery. J Membr Sci 2021;624:119029.
30. Park G, Kim D. Porous PTFE reinforced SPEEK proton exchange membranes for enhanced mechanical, dimensional, and electrochemical stability. Polymer 2021;218:123506.
31. Ahn Y, Kim D. High energy efficiency and stability of vanadium redox flow battery using pore-filled anion exchange membranes with ultra-low V4+ permeation. J Ind Eng Chem 2022;110:395-404.
32. Zhang T, Tian T, Shen B, Song Y, Yao H. Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 2019;14:7-14.
33. Bhatt MD, Cho M, Cho K. Interaction of Li+ ions with ethylene carbonate (EC): density functional theory calculations. Appl Surf Sci 2010;257:1463-8.
34. Bhatt MD, Cho M, Cho K. Conduction of Li+ cations in ethylene carbonate (EC) and propylene carbonate (PC): comparative studies using density functional theory. J Solid State Electrochem 2012;16:435-41.