1. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.
2. Bashir T, Ismail SA, Song Y, et al. A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater 2021;1:100019.
3. Yan Y, Zeng T, Liu S, Shu C, Zeng Y. Lithium metal stabilization for next-generation lithium-based batteries: from fundamental chemistry to advanced characterization and effective protection. Energy Mater 2023;3:300002.
4. Nazir A, Le HT, Nguyen A, Park C. Graphene analogue metal organic framework with superior capacity and rate capability as an anode for lithium ion batteries. Electrochim Acta 2021;389:138750.
5. Nguyen A, Park C. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries. J Membr Sci 2023;675:121552.
6. Vu D, Kim D, Nguyen A, Park C. Stabilizing interface of novel 3D-hierarchical porous carbon for high-performance lithium-sulfur batteries. Electrochim Acta 2022;418:140369.
7. Kim H, Ngo DT, Verma R, et al. Vanadium nitride and carbon nanofiber composite membrane as an interlayer for extended life cycle lithium-sulphur batteries. Ceram Int 2021;47:21476-89.
8. Nguyen A, Le HT, Verma R, Vu D, Park C. Boosting sodium-ion battery performance using an antimony nanoparticle self-embedded in a 3D nitrogen-doped carbon framework anode. Chem Eng J 2022;429:132359.
9. Verma R, Singhbabu YN, Didwal PN, Nguyen A, Kim J, Park C. Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries. Batteries Supercaps 2020;3:1099-111.
10. Didwal PN, Verma R, Nguyen AG, Ramasamy HV, Lee GH, Park CJ. Improving cyclability of all-solid-state batteries via stabilized electrolyte-electrode interface with additive in poly (propylene carbonate) based Solid Electrolyte. Adv Sci 2022;9:2105448.
11. Sung B, Didwal PN, Verma R, Nguyen A, Chang DR, Park C. Composite solid electrolyte comprising poly (propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries. Electrochim Acta 2021;392:139007.
12. Woo M, Didwal PN, Kim H, et al. Reinforcing effect of single-wall carbon nanotubes on the LiNi0.6Co0.2Mn0.2O2 composite cathode for high-energy-density all-solid-state Li-ion batteries. Appl Surf Sci 2021;568:150934.
13. Li G, Guo S, Xiang B, et al. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater 2022;2:200020.
14. Haynes WM. CRC handbook of chemistry and physics. 97th ed. Boca Raton: CRC Press; 2016. p. 2670.
15. Verma R, Didwal PN, Hwang J, Park C. Recent progress in electrolyte development and design strategies for next-generation potassium-ion batteries. Batteries Supercaps 2021;4:1428-50.
16. Zhang J, Lai L, Wang H, Chen M, Shen ZX. Energy storage mechanisms of anode materials for potassium ion batteries. Mater Today Energy 2021;21:100747.
17. Liu J, Yin T, Tian B, et al. Unraveling the potassium storage mechanism in graphite foam. Adv Energy Mater 2019;9:1900579.
18. Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon. Small 2022;18:2107113.
19. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021;17:1903194.
20. Kim H, Kim JC, Bianchini M, Seo D, Rodriguez-garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 2018;8:1702384.
21. Qi S, Deng J, Zhang W, Feng Y, Ma J. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Metals 2020;39:970-88.
22. Wang Q, Zhao X, Ni C, et al. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C 2017;121:12652-7.
23. Liu X, Zhu J, Yue L, et al. Green and scalable template-free strategy to fabricate honeycomb-like interconnected porous micro-sized layered sb for high-performance potassium storage. Small 2022;18:2204552.
24. Cheng X, Sun Y, Li D, et al. From 0D to 3D: dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv Energy Mater 2021;11:2102263.
25. Verma R, Didwal PN, Nguyen A, Park C. SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chem Eng J 2021;421:129988.
26. Ji F, Liu T, Li Y, Li D, Ci L. Ball-milling strategy for fast and stable potassium-ion storage in antimony-carbon composite anodes. Chemelectrochem 2020;7:4587-93.
27. Ko JK, Jo JH, Kim HJ, et al. Bismuth telluride anode boosting highly reversible electrochemical activity for potassium storage. Energy Stor Mater 2021;43:411-21.
28. Verma R, Didwal PN, Ki HS, Cao G, Park CJ. SnP3/carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl Mater Inter 2019;11:26976-84.
29. Guo X, Gao H, Wang S, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries. Nano Lett 2022;22:1225-32.
30. Shi X, Liu W, Zhao S, et al. Integrated anodes from heteroatoms (N, S, and F) co-doping antimony/carbon composite for efficient alkaline ion (Li+/K+) storage. ACS Appl Energy Mater 2022;5:12925-36.
31. Wu Y, Zheng J, Tong Y, et al. Carbon hollow tube-confined Sb/Sb2S3 nanorod fragments as highly stable anodes for potassium-ion batteries. ACS Appl Mater Inter 2021;13:51066-77.
32. Nazir A, Le HT, Nguyen A, Kim J, Park C. Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem Eng J 2022;450:138408.
33. Verma R, R K, Varadaraju U. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications. Appl Surf Sci 2017;418:30-39.
34. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298-415.
35. Tian Z, Chui N, Lian R, et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: a free-standing anode for high-performance potassium-ion storage. Energy Stor Mater 2020;27:591-8.
36. Cui RC, Zhou HY, Li JC, Yang CC, Jiang Q. Ball-cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv Funct Mater 2021;31:2103067.
37. Cao K, Liu H, Jia Y, et al. Flexible antimony@carbon integrated anode for high-performance potassium-ion battery. Adv Mater Technol 2020;5:2000199.
38. Li C, Bi AT, Chen HL, et al. Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material. J Mater Chem A 2021;9:5740-50.
39. Lin X, Xue F, Zhang Z, Li Q. Sb nanoparticles encapsulated in N-doped carbon nanotubes as freestanding anodes for high-performance lithium and potassium ion batteries. Rare Metals 2023;42:449-58.
40. Chen Q, Li H, Li H, et al. Freestanding film formed with Sb-nanoplates embedded in flexible porous carbon nanofibers as a binder-free anode for high-performance wearable potassium-ion battery. Chin Chem Lett 2023;34:107402.
41. He X, Liao J, Wang S, et al. From nanomelting to nanobeads: nanostructured SbxBi1-x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J Mater Chem A 2019;7:27041-7.
42. Xiong P, Wu J, Zhou M, Xu Y. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020;14:1018-26.
43. Imtiaz S, Kapuria N, Amiinu IS, et al. Directly deposited antimony on a copper silicide nanowire array as a high-performance potassium-ion battery anode with a long cycle life. Adv Funct Mater 2023;33:2209566.
44. Yang Y, Shi W, Leng S, Cheng H. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries. J. Colloid Interf Sci 2022;628:41-52.
45. Xu A, Zhu Q, Li G, et al. 2D bismuth@N-doped carbon sheets for ultrahigh rate and stable potassium storage. Small 2022;18:2203976.
46. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018;12:12932-40.
47. Verma R, Nguyen A, Didwal PN, Moon C, Kim J, Park C. In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chem Eng J 2022;446:137302.
48. Chen N, Shen N, Yi X, et al. Achieving stable K-storage performance of carbon sphere-confined Sb via electrolyte regulation. J Energy Chem 2023;76:51-8.
49. Liu X, Sun Y, Tong Y, Li H. Unique Spindle-like bismuth-based composite toward ultrafast potassium storage. Small 2022;18:2204045.
50. Ababaikeri R, Sun Y, Wang X, et al. Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with enhanced electrochemical performances. J Alloys Compd 2023;935:168207.
51. Liu X, Yu X, Tong Y, et al. Potassium storage in bismuth nanoparticles embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem Eng J 2022;446:137329.
52. Yao J, Zhang C, Yang G, et al. Bismuth nanoparticles confined in carbonaceous nanospheres as anodes for high-performance potassium-ion batteries. ACS Appl Mater Inter 2021;13:31766-74.
53. Zhang P, Zhu Q, Wei Y, Xu B. Achieving stable and fast potassium storage of Sb2S3@MXene anode via interfacial bonding and electrolyte chemistry. Chem Eng J 2023;451:138891.
54. Shi Y, Zhou D, Wu T, Xiao Z. Deciphering the Sb4O5Cl2-MXene hybrid as a potential anode material for advanced potassium-ion batteries. ACS Appl Mater Inter 2022;14:29905-15.
55. Xiang X, Liu D, Zhu X, et al. Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Appl Surf Sci 2020;514:145947.
56. Li H, Zhao C, Yin Y, et al. N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 2020;12:4309-13.
57. Long H, Yin X, Wang X, Zhao Y, Yan L. Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries. J Energy Chem 2022;67:787-96.
58. Ouyang D, Wang C, Zhu H, Yu F, Yin J. Bismuth nanoparticles encapsulated in mesoporous carbon nanofibers for efficient potassium-ion storage. ACS Appl Nano Mater 2022;5:13171-9.
59. Hsieh Y, Chen K, Tuan H. A synergetic SnSb-amorphous carbon composites prepared from polyesterification process as an ultrastable potassium-ion battery anode. Chem Eng J 2021;420:130451.
60. Shi X, Liu W, Zhang D, et al. Nanoscale localized growth of SnSb for general-purpose high performance alkali (Li, Na, K) ion storage. Chem Eng J 2022;431:134318.
61. Du Y, Yi Z, Zhang Z, et al. A highly stable potassium-ion battery anode enabled by multilayer graphene sheets embedded with SnTe nanoparticles. Chem Eng J 2022;435:135100.
62. Chen KT, Tuan HY. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 2020;14:11648-61.
63. Huang C, Xu A, Li G, et al. Alloyed BiSb nanoparticles confined in tremella-like carbon microspheres for ultralong-life potassium ion batteries. Small 2021;17:2100685.
64. Chen K, Yang Y, Lyu L, Lu M, Tuan H. In situ formed robust submicron-sized nanocrystalline aggregates enable highly-reversible potassium ion storage. Nano Energy 2021;88:106233.
65. Wu Q, Chen B, Xie H, et al. Bismuth-antimony alloy nanoparticles encapsulated in 3D carbon framework: synergistic effect for enhancing interfacial potassium storage. Chem Eng J 2022;430:132906.
66. Luo Q, Wen J, Liu G, et al. Sb2Se3/Sb embedded in carbon nanofibers as flexible and twistable anode for potassium-ion batteries. J Power Sources 2022;545:231917.
67. Sun X, Zhang B, Chen M, et al. Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipop-like composite for full/half potassium-ion and lithium-ion batteries. Nano Today 2022;43:101408.
68. Lin W, Yang Y, Tuan H. Ternary chalcogenide anodes for high-performance potassium-ion batteries and hybrid capacitors via composition-mediated bond softening and intermediate phase. Energy Stor Mater 2022;51:38-53.
69. Zhang Y, Li M, Huang F, et al. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Appl Surf Sci 2020;499:143907.
70. Wu Y, Sun Y, Tong Y, Li H. FeSb2 nanoparticles embedded in 3D porous carbon framework: an robust anode material for potassium storage with long activation process. Small 2022;18:2201934.
71. Su M, Li J, He K, et al. NiSb/nitrogen-doped carbon derived from Ni-based framework as advanced anode for lithium-ion batteries. J Colloid Interf Sci 2023;629:83-91.
72. Qian M, Zhang W, Luo G, Wu C, Qin W. Air-stabilized pore structure engineering of antimony-based anode by electrospinning for potassium ion batteries. J Colloid Interf Sci 2023;633:352-61.
73. Chang CH, Chen KT, Hsieh YY, Chang CB, Tuan HY. Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano 2022;16:1486-501.
74. Li R, Wu J, He J, et al. Embedding amorphous SnS in electrospun porous carbon nanofibers for efficient potassium storage with ultralong cycle life. Compos B Eng 2022;243:110132.
75. He Y, Xu Y, Zhang M, et al. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Sci Bull 2022;67:151-60.
76. Yuan L, Zhou Q, Li T, Wang Y, Liu Z, Chong S. Promoting superior K-ion storage of Bi2S3 nanorod anode via graphene physicochemical protection and electrolyte stabilization effect. Appl Energ 2022;322:119471.
77. Xiao B, Zhang H, Sun Z, et al. Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, S-doped carbon nanorod anodes. J Energy Chem 2023;76:547-56.
78. Si J, Liu X, Wang Z, Zhang S, Deng C. Confining SnS2@N, S codoped carbon in core-shell beads of necklace-like fibers towards ultrastable anode for flexible potassium-ion battery. J Energy Chem 2023;76:349-58.
79. Hao G, Zhang C, Chen Z, Xu Y. Nanoconfinement synthesis of ultrasmall bismuth oxyhalide nanocrystals with size-induced fully reversible potassium-ion storage and ultrahigh volumetric capacity. Adv Funct Mater 2022;32:2201352.
80. Hsieh Y, Tuan H. Architectural van der Waals Bi2S3/Bi2Se3 topological heterostructure as a superior potassium-ion storage material. Energy Stor Mater 2022;51:789-805.
81. Suo G, Zhang J, Li R, Ma Z, Cheng Y, Ahmed SM. Antimony anchored in MoS2 nanosheets with N-doped carbon coating to boost potassium storage performance. Mater Today Chem 2023;27:101300.
82. Zhao N, Qin J, Chu L, et al. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020;78:105345.
83. Chen B, Yang L, Bai X, et al. Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 2021;17:2006824.
84. Du X, Zhang B. Robust solid electrolyte interphases in localized high concentration electrolytes boosting black phosphorus anode for potassium-ion batteries. ACS Nano 2021;15:16851-60.
85. Feng W, Wang H, Jiang Y, et al. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater 2022;12:2103343.
86. Liu X, Zhu J, Wang X, et al. Boosting potassium storage kinetics, stability, and volumetric performance of honeycomb-like porous red phosphorus via in situ embedding self-growing conductive nano-metal networks. Adv Funct Mater 2023;33:2209388.
87. Ji S, Song C, Li J, et al. Metal phosphides embedded with in situ-formed metal phosphate impurities as buffer materials for high-performance potassium-ion batteries. Adv Energy Mater 2021;11:2101413.
88. Zhou L, Cao Z, Zhang J, et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv Mater 2021;33:2005993.
89. Wu J, Zhang Q, Liu S, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 2020;77:105118.
90. Yang Z, Li W, Zhang G, et al. Constructing Sb-O-C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy 2022;93:106764.
91. Li W, Yang Z, Zuo J, Wang J, Li X. Emerging carbon-based flexible anodes for potassium-ion batteries: progress and opportunities. Front Chem 2022;10:1002540.
92. Wang B, Zhang Z, Yuan F, et al. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem Eng J 2022;428:131093.
93. Yi Z, Xu J, Xu Z, et al. Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. J Energy Chem 2021;60:241-8.
94. Tian R, Duan L, Xu Y, et al. Coupling ternary selenide SnSb2Se4 with graphene nanosheets for high-performance potassium-ion batteries. Energy Environ Mater 2023:e12617.
95. Yuan F, Li Z, Zhang D, et al. Fundamental understanding and research progress on the interfacial behaviors for potassium-ion battery anode. Adv Sci 2022;9:2200683.
96. Zhou L, Cao Z, Wahyudi W, et al. Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett 2020;5:766-76.
97. Du X, Gao Y, Zhang B. Building elastic solid electrolyte interphases for stabilizing microsized antimony anodes in potassium ion batteries. Adv Funct Mater 2021;31:2102562.
98. Lv L, Zhang H, Lu D, et al. A low-concentration sulfone electrolyte enables high-voltage chemistry of lithium-ion batteries. Energy Mater 2022;2:200030.
99. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater 2021;1:100013.
100. Xiao W, Shi P, Li Z, et al. Regulating solid electrolyte interphases on phosphorus/carbon anodes via localized high-concentration electrolytes for potassium-ion batteries. J Energy Chem 2023;78:589-605.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.