REFERENCES
1. Chen H, Maxwell A, Li C, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 2023;613:676-81.
2. Park J, Kim J, Yun HS, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023;616:724-30.
3. Kim JS, Heo JM, Park GS, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022;611:688-94.
4. Sun Y, Ge L, Dai L, et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 2023;615:830-5.
5. Deumel S, van Breemen A, Gelinck G, et al. High-sensitivity high-resolution
6. Perini CA, Doherty TA, Stranks SD, Correa-baena J, Hoye RL. Pressing challenges in halide perovskite photovoltaics - from the atomic to module level. Joule 2021;5:1024-30.
7. Szostak R, de Souza Gonçalves A, de Freitas JN, et al. In situ and operando characterizations of metal halide perovskite and solar cells: insights from lab-sized devices to upscaling processes. Chem Rev 2023;123:3160-236.
8. Correa-Baena JP, Luo Y, Brenner TM, et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 2019;363:627-31.
9. Frohna K, Anaya M, Macpherson S, et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat Nanotechnol 2022;17:190-6.
10. Macpherson S, Doherty TAS, Winchester AJ, et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 2022;607:294-300.
11. Li N, Luo Y, Chen Z, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 2020;4:1743-58.
12. da Silva FMC, Szostak R, Teixeira VC, et al. Disentangling X-ray and sunlight irradiation effects under a controllable atmosphere in metal halide perovskites. Solar RRL 2023;7:2200898.
14. Stuckelberger ME, Nietzold T, West BM, et al. Effects of
15. Svanström S, García Fernández A, Sloboda T, Jacobsson TJ, Rensmo H, Cappel UB.
16. Schulz P, Whittaker-brooks LL, Macleod BA, Olson DC, Loo Y, Kahn A. Electronic level alignment in inverted organometal perovskite solar cells. Adv Mater Inter 2015;2:1400532.
17. Ferrer Orri J, Doherty TAS, Johnstone D, et al. Unveiling the interaction mechanisms of electron and
18. Ma C, Eickemeyer FT, Lee SH, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 2023;379:173-8.
19. Chen S, Zhang Y, Zhao J, et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Sci Bull 2020;65:1643-9.
20. Rothmann MU, Li W, Zhu Y, et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv Mater 2018;30:e1800629.
21. Scalon L, Szostak R, Araújo FL, et al. Improving the stability and efficiency of perovskite solar cells by a bidentate anilinium salt. JACS Au 2022;2:1306-12.
22. Tolentino HC, Geraldes RR, da Silva FM, et al. The CARNAÚBA
23. Lena FR, Bueno CSNC, Cardoso FH, et al. Commissioning of the cryogenic sample environment for the TARUMÃ station at the CARNAÚBA beamline at Sirius/LNLS. J Phys Conf Ser 2022;2380:012108.
24. Godden TM, Suman R, Humphry MJ, Rodenburg JM, Maiden AM. Ptychographic microscope for three-dimensional imaging. Opt Express 2014;22:12513-23.
25. Dierolf M, Menzel A, Thibault P, et al. Ptychographic
26. Vijayakumar J, Yuan H, Mille N, et al. Soft
27. Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 2009;109:338-43.
28. Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972;35:237-46. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2890261 [Last accessed on 3 June 2024].
29. Luke DR. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl 2005;21:37-50.
31. Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 1978;3:27-9.
32. Liu L, Oliveira A, Tavares D, et al. Status of SIRIUS operation with users. Proceedings of the 14th international particle accelerator conference; 2023 May 7-12; Venice, Italy.
33. Kirz J, Jacobsen C, Howells M. Soft
34. Jones MWM, Hare DJ, James SA, de Jonge MD, McColl G. Radiation dose limits for bioanalytical
35. Szostak R, Silva JC, Turren-Cruz SH, et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Sci Adv 2019;5:eaaw6619.
36. Ilett M, S'ari M, Freeman H, et al. Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques. Philos Trans A Math Phys Eng Sci 2020;378:20190601.
37. Stenn K, Bahr GF. Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J Ultrastruct Res 1970;31:526-50.
38. Tang X, Brandl M, May B, et al. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. J Mater Chem A 2016;4:15896-903.
40. Godding JS, Ramadan AJ, Lin Y, Schutt K, Snaith HJ, Wenger B. Oxidative passivation of metal halide perovskites. Joule 2019;3:2716-31.
41. Marchezi PE, Therézio EM, Szostak R, et al. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions. J Mater Chem A 2020;8:9302-12.
42. Zhuang J, Wang J, Yan F. Review on chemical stability of lead halide perovskite solar cells. Nanomicro Lett 2023;15:84.
43. Juarez-perez EJ, Ono LK, Qi Y. Thermal degradation of formamidinium based lead halide perovskites into sym -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J Mater Chem A 2019;7:16912-9.
44. Juarez-perez EJ, Hawash Z, Raga SR, Ono LK, Qi Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ Sci 2016;9:3406-10.