REFERENCES

1. Chen H, Maxwell A, Li C, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 2023;613:676-81.

2. Park J, Kim J, Yun HS, et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023;616:724-30.

3. Kim JS, Heo JM, Park GS, et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022;611:688-94.

4. Sun Y, Ge L, Dai L, et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 2023;615:830-5.

5. Deumel S, van Breemen A, Gelinck G, et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat Electron 2021;4:681-8.

6. Perini CA, Doherty TA, Stranks SD, Correa-baena J, Hoye RL. Pressing challenges in halide perovskite photovoltaics - from the atomic to module level. Joule 2021;5:1024-30.

7. Szostak R, de Souza Gonçalves A, de Freitas JN, et al. In situ and operando characterizations of metal halide perovskite and solar cells: insights from lab-sized devices to upscaling processes. Chem Rev 2023;123:3160-236.

8. Correa-Baena JP, Luo Y, Brenner TM, et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 2019;363:627-31.

9. Frohna K, Anaya M, Macpherson S, et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat Nanotechnol 2022;17:190-6.

10. Macpherson S, Doherty TAS, Winchester AJ, et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 2022;607:294-300.

11. Li N, Luo Y, Chen Z, et al. Microscopic degradation in formamidinium-cesium lead iodide perovskite solar cells under operational stressors. Joule 2020;4:1743-58.

12. da Silva FMC, Szostak R, Teixeira VC, et al. Disentangling X-ray and sunlight irradiation effects under a controllable atmosphere in metal halide perovskites. Solar RRL 2023;7:2200898.

13. Pfeiffer F. X-ray ptychography. Nat Photon 2018;12:9-17.

14. Stuckelberger ME, Nietzold T, West BM, et al. Effects of X-rays on perovskite solar cells. J Phys Chem C 2020;124:17949-56.

15. Svanström S, García Fernández A, Sloboda T, Jacobsson TJ, Rensmo H, Cappel UB. X-ray stability and degradation mechanism of lead halide perovskites and lead halides. Phys Chem Chem Phys 2021;23:12479-89.

16. Schulz P, Whittaker-brooks LL, Macleod BA, Olson DC, Loo Y, Kahn A. Electronic level alignment in inverted organometal perovskite solar cells. Adv Mater Inter 2015;2:1400532.

17. Ferrer Orri J, Doherty TAS, Johnstone D, et al. Unveiling the interaction mechanisms of electron and X-ray radiation with halide perovskite semiconductors using scanning nanoprobe diffraction. Adv Mater 2022;34:e2200383.

18. Ma C, Eickemeyer FT, Lee SH, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 2023;379:173-8.

19. Chen S, Zhang Y, Zhao J, et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Sci Bull 2020;65:1643-9.

20. Rothmann MU, Li W, Zhu Y, et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv Mater 2018;30:e1800629.

21. Scalon L, Szostak R, Araújo FL, et al. Improving the stability and efficiency of perovskite solar cells by a bidentate anilinium salt. JACS Au 2022;2:1306-12.

22. Tolentino HC, Geraldes RR, da Silva FM, et al. The CARNAÚBA X-ray nanospectroscopy beamline at the Sirius-LNLS synchrotron light source: developments, commissioning, and first science at the TARUMÃ station. J Electron Spectrosc 2023;266:147340.

23. Lena FR, Bueno CSNC, Cardoso FH, et al. Commissioning of the cryogenic sample environment for the TARUMÃ station at the CARNAÚBA beamline at Sirius/LNLS. J Phys Conf Ser 2022;2380:012108.

24. Godden TM, Suman R, Humphry MJ, Rodenburg JM, Maiden AM. Ptychographic microscope for three-dimensional imaging. Opt Express 2014;22:12513-23.

25. Dierolf M, Menzel A, Thibault P, et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010;467:436-9.

26. Vijayakumar J, Yuan H, Mille N, et al. Soft X-ray spectro-ptychography of boron nitride nanobamboos, carbon nanotubes and permalloy nanorods. J Synchrotron Radiat 2023;30:746-57.

27. Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 2009;109:338-43.

28. Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972;35:237-46. Available from: https://www.scirp.org/reference/referencespapers?referenceid=2890261 [Last accessed on 3 June 2024].

29. Luke DR. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl 2005;21:37-50.

30. Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt 1982;21:2758-69.

31. Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 1978;3:27-9.

32. Liu L, Oliveira A, Tavares D, et al. Status of SIRIUS operation with users. Proceedings of the 14th international particle accelerator conference; 2023 May 7-12; Venice, Italy.

33. Kirz J, Jacobsen C, Howells M. Soft X-ray microscopes and their biological applications. Q Rev Biophys 1995;28:33-130.

34. Jones MWM, Hare DJ, James SA, de Jonge MD, McColl G. Radiation dose limits for bioanalytical X-ray fluorescence microscopy. Anal Chem 2017;89:12168-75.

35. Szostak R, Silva JC, Turren-Cruz SH, et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite films. Sci Adv 2019;5:eaaw6619.

36. Ilett M, S'ari M, Freeman H, et al. Analysis of complex, beam-sensitive materials by transmission electron microscopy and associated techniques. Philos Trans A Math Phys Eng Sci 2020;378:20190601.

37. Stenn K, Bahr GF. Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J Ultrastruct Res 1970;31:526-50.

38. Tang X, Brandl M, May B, et al. Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. J Mater Chem A 2016;4:15896-903.

39. Egerton RF, Li P, Malac M. Radiation damage in the TEM and SEM. Micron 2004;35:399-409.

40. Godding JS, Ramadan AJ, Lin Y, Schutt K, Snaith HJ, Wenger B. Oxidative passivation of metal halide perovskites. Joule 2019;3:2716-31.

41. Marchezi PE, Therézio EM, Szostak R, et al. Degradation mechanisms in mixed-cation and mixed-halide CsxFA1-xPb(BryI1-y)3 perovskite films under ambient conditions. J Mater Chem A 2020;8:9302-12.

42. Zhuang J, Wang J, Yan F. Review on chemical stability of lead halide perovskite solar cells. Nanomicro Lett 2023;15:84.

43. Juarez-perez EJ, Ono LK, Qi Y. Thermal degradation of formamidinium based lead halide perovskites into sym -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J Mater Chem A 2019;7:16912-9.

44. Juarez-perez EJ, Hawash Z, Raga SR, Ono LK, Qi Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ Sci 2016;9:3406-10.

45. Hu M, Chen M, Guo P, et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nat Commun 2020;11:151.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/