REFERENCES

1. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11:2696-767.

2. Sánchez-Díez E, Ventosa E, Guarnieri M, et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J Power Sources 2021;481:228804.

3. Guillen GR, Pan Y, Li M, Hoek EMV. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 2011;50:3798-817.

4. Gong K, Xu F, Grunewald JB, et al. All-soluble all-iron aqueous redox-flow battery. ACS Energy Lett 2016;1:89-93.

5. Sinclair N, Vasil M, Kellamis C, et al. Membrane considerations for the all-iron hybrid flow battery. J Electrochem Soc 2023;170:050516.

6. Jiang F, Zhou X, Guo D. All-iron semi-flow battery based on Fe3O4@CNTs 3-dimensional negative electrode. Electrochim Acta 2023;445:142064.

7. Manohar AK, Kim KM, Plichta E, Hendrickson M, Rawlings S, Narayanan SR. A high efficiency iron-chloride redox flow battery for large-scale energy storage. J Electrochem Soc 2016;163:A5118.

8. Jiang W, Jiang F, Zhang J, Yang F, Liu L, Hu M. Novel strategy for cathode in iron-lead single-flow battery: electrochemically modified porous graphite plate electrode. J Energy Storage 2024;80:110274.

9. Lu W, Yuan Z, Zhao Y, Zhang H, Zhang H, Li X. Porous membranes in secondary battery technologies. Chem Soc Rev 2017;46:2199-236.

10. Xiong P, Zhang L, Chen Y, Peng S, Yu G. A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries. Angew Chem Int Ed Engl 2021;60:24770-98.

11. Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer membranes for all-vanadium redox flow batteries: a review. Membranes 2021;11:214.

12. Zhang H, Zhang H, Zhang F, Li X, Li Y, Vankelecom I. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy Environ Sci 2013;6:776-81.

13. Ye J, Su J, Li H, Sun L. Chapter 5 - Recent advances in high-performance membranes for vanadium redox flow battery. In: 60 years of the loeb-sourirajan membrane. 2022. pp. 131-54.

14. Ahmad AL, Farooqui UR, Hamid NA. Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 2018;142:330-6.

15. Liu L, Wang F, Zhang J, et al. Boosting ion conduction in polymer blends by tailoring polymer phase separation. J Power Sources 2023;569:233005.

16. Wang F, Zhang Z, Jiang F. Dual-porous structured membrane for ion-selection in vanadium flow battery. J Power Sources 2021;506:230234.

17. Lin YC, Huang SL, Yeh CH, et al. Preparation of cellulose acetate/PP composite membrane for vanadium redox flow battery applications. Rare Metals 2011;30:22-6.

18. Chen D, Li D, Li X. Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application. J Power Sources 2017;353:11-8.

19. Che X, Zhao H, Ren X, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J Membrane Sci 2020;611:118359.

20. Zhou X, Xue R, Zhong Y, Zhang Y, Jiang F. Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries. J Membrane Sci 2020;595:117614.

21. Gubler L, Vonlanthen D, Schneider A, Oldenburg FJ. Composite membranes containing a porous separator and a polybenzimidazole thin film for vanadium redox flow batteries. J Electrochem Soc 2020;167:100502.

22. Hansen CM. Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton: CRC Press; 2007.

23. Xue R, Jiang F, Wang F, Zhou X. Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method. J Power Sources 2020;449:227475.

24. Krowne CM. Physics, electrochemistry, chemistry, and electronics of the vanadium redox flow battery by analyzing all the governing equations. Phys Chem Chem Phys 2024;26:2823-62.

25. Krowne CM. Nernst equations and concentration chemical reaction overpotentials for VRFB operation. J Electrochem Soc 2023;170:100534.

26. Zhang Z, Jiang F, Wu K, Shen P. Research on iron-lead semi-flow battery based on 3D solid electrode. Acta Chimica Sinica 2022;80:56-62.

27. Bottino A, Capannelli G, Munari S, Turturro A. Solubility parameters of poly(vinylidene fluoride). J Polym Sci B Polym Phys 1988;26:785-94.

28. Polymer handbook. 4th ed. New York: John Wiley & Sons. 1999. Available from: http://nguyen.hong.hai.free.fr/EBOOKS/SCIENCE%20AND%20ENGINEERING/MECANIQUE/MATERIAUX/COMPOSITES/Polymer_Handbook/66286_fm.pdf. [Last accessed on 9 May 2024].

29. Zeng M, Fang Z, Xu C. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J Membrane Sci 2004;230:175-81.

30. Jiang B, Wu L, Yu L, Qiu X, Xi J. A comparative study of Nafion series membranes for vanadium redox flow batteries. J Membrane Sci 2016;510:18-26.

31. Zhao J, Wang J, Sun L, Chen Q, Lu H. Novel low-cost cation exchange membrane containing hydrophilic cross-linked structure for enhanced electrodialysis properties. J Taiwan Inst Chem Eng 2019;100:269-76.

32. Huskinson B, Marshak MP, Suh C, et al. A metal-free organic-inorganic aqueous flow battery. Nature 2014;505:195-8.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/