REFERENCES

1. Xiang Y, Li J, Lei J, et al. Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress. ChemSusChem 2016;9:3023-39.

2. Hu X, Ma Y, Qian J, et al. Self-induced dual-layered solid electrolyte interphase with high toughness and high ionic conductivity for ultra-stable lithium metal batteries. Adv Mater 2024;36:e2303710.

3. Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem Soc Rev 2020;49:2140-95.

4. Ma F, Wan Y, Wang X, et al. Bifunctional atomically dispersed Mo-N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano 2020;14:10115-26.

5. Ma Y, Qu W, Hu X, et al. Induction/inhibition effect on lithium dendrite growth by a binary modification layer on a separator. ACS Appl Mater Interfaces 2022;14:44338-44.

6. Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F. More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 2017;29:1606823.

7. Xia S, Zhang X, Liang C, Yu Y, Liu W. Stabilized lithium metal anode by an efficient coating for high-performance Li-S batteries. Energy Stor Mater 2020;24:329-35.

8. Liu X, Wang J, Zhu F, et al. Surface oxygen vacancy engineering in weak Bi-O bonded ferroelectric bismuth sodium titanate for boosting the photocatalytic CO2 reduction reaction. J Mater Chem A 2024;12:9661-71.

9. Jiang FN, Yang SJ, Cheng XB, et al. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. J Energy Chem 2022;72:158-65.

10. Tan K, Liu Y, Tan Z, Zhang J, Hou L, Yuan C. High-yield and in situ fabrication of high-content nitrogen-doped graphene nanoribbons@Co/CoOOH as an integrated sulfur host towards Li-S batteries. J Mater Chem A 2020;8:3048-59.

11. Deng N, Kang W, Liu Y, et al. A review on separators for lithium sulfur battery: progress and prospects. J Power Sources 2016;331:132-55.

12. Gao S, Wang K, Wang R, et al. Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries. J Mater Chem A 2017;5:17889-95.

13. Jin Z, Xie K, Hong X, Hu Z, Liu X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources 2012;218:163-7.

14. Jiang K, Gao S, Wang R, et al. Lithium sulfonate/carboxylate-anchored polyvinyl alcohol separators for lithium sulfur batteries. ACS Appl Mater Interfaces 2018;10:18310-5.

15. Zheng B, Li J, Wang L, et al. Hydrogen storage in MXenes: controlled adjustment of sorption by interlayer distance and transition metal elements. Int J Hydrogen Energy 2024;50:1555-61.

16. Chen D, Zhu M, Zhan W, et al. Fe, N co-doped mesoporous carbon spheres as barrier layer absorbing and reutilizing polysulfides for high-performance Li-S batteries. J Mater Sci 2022;57:13527-40.

17. Yu X, Chen W, Cai J, Lu X, Sun Z. Oxygen vacancy-rich MnO nanoflakes/N-doped carbon nanotubes modified separator enabling chemisorption and catalytic conversion of polysulfides for Li-S batteries. J Colloid Interface Sci 2022;610:407-17.

18. Wang Z, Yu J, Xu R. Needs and trends in rational synthesis of zeolitic materials. Chem Soc Rev 2012;41:1729-41.

19. te Hennepe HJC, Boswerger WBF, Bargeman D, Mulder MHV, Smolders CA. Zeolite-filled silicone rubber membranes experimental determination of concentration profiles. J Membr Sci 1994;89:185-96.

20. Shekarian E, Jafari Nasr MR, Mohammadi T, Bakhtiari O, Javanbakht M. Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator. J Appl Polym Sci 2019;136:47841.

21. Yu L, Miao J, Jin Y, Lin JYS. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front Chem Sci Eng 2017;11:346-52.

22. Lin H, Yang L, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ Sci 2017;10:1476-86.

23. Peng H, Zhang Y, Chen Y, et al. Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. Mater Today Energy 2020;18:100519.

24. Yang X, Gao X, Sun Q, et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv Mater 2019;31:e1901220.

25. Wu J, Ye T, Wang Y, et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 2022;16:15734-59.

26. Xu J, Zhang W, Fan H, Cheng F, Su D, Wang G. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018;51:73-82.

27. Su D, Kretschmer K, Wang G. Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 2016;6:1501785.

28. Sundararajan M, Sakthivel P, Fernandez AC. Structural, optical and electrical properties of ZnO-ZnS nanocomposites prepared by simple hydrothermal method. J Alloys Compd 2018;768:553-62.

29. Tsuzuki S, Shinoda W, Seki S, et al. Intermolecular interactions in Li+-glyme and Li+-glyme-TFSA-complexes: relationship with physicochemical properties of [Li (glyme)][TFSA] ionic liquids. Chemphyschem 2013;14:1993-2001.

30. Xie Z, Wu Z, An X, et al. 2-fluoropyridine: a novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chem Eng J 2020;393:124789.

31. Jeon T, Jung SC. The molecular sieving mechanism of a polysulfide-blocking metal-organic framework separator for lithium-sulfur batteries. J Mater Chem A 2021;9:23929-40.

32. Yang J, Zhao S, Lu Y, Zeng X, Lv W, Cao G. ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li-S batteries. J Mater Chem A 2020;8:231-41.

33. He J, Luo L, Chen Y, Manthiram A. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries. Adv Mater 2017;29:1702707.

34. Zeng P, Liu C, Zhao X, et al. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020;14:11558-69.

35. Tao X, Wang J, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat Commun 2016;7:11203.

36. Rui X, Ding N, Liu J, Li C, Chen C. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim Acta 2010;55:2384-90.

37. Wang X, Han J, Luo C, et al. Coordinated adsorption and catalytic conversion of polysulfides enabled by perovskite bimetallic hydroxide nanocages for lithium-sulfur batteries. Small 2021;17:e2101538.

38. Lu H, Liu M, Zhang X, et al. Catalytic effect of ammonium thiosulfate as a bifunctional electrolyte additive for regulating redox kinetics in lithium-sulfur batteries by altering the reaction pathway. ACS Appl Mater Interfaces 2024;16:13640-50.

39. Wang M, Fan L, Sun X, et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett 2020;5:3041-50.

40. Barnard AS, Feigl CA, Russo SP. Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles. Nanoscale 2010;2:2294-301.

41. Zhou T, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ Sci 2017;10:1694-703.

42. Lei D, Shang W, Zhang X, et al. Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 2021;15:20478-88.

43. Li C, Qi S, Zhu L, et al. Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithium-sulfur batteries. Nano Today 2021;40:101246.

44. Park J, Kim ET, Kim C, et al. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries. Adv Energy Mater 2017;7:1700074.

45. Wang B, Wang L, Zhang B, et al. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries. ACS Nano 2022;16:4947-60.

46. Qin B, Cai Y, Wang P, Zou Y, Cao J, Qi J. Crystalline molybdenum carbide-amorphous molybdenum oxide heterostructures: in situ surface reconfiguration and electronic states modulation for Li-S batteries. Energy Stor Mater 2022;47:345-53.

47. Zeng Q, Li X, Gong W, et al. Copolymerization of sulfur chains with vinyl functionalized metal-organic framework for accelerating redox kinetics in lithium-sulfur batteries. Adv Energy Mater 2022;12:2104074.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/