REFERENCES

1. Li M, Wang C, Chen Z, Xu K, Lu J. New concepts in electrolytes. Chem Rev 2020;120:6783-819.

2. Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc 2017;164:A5019.

3. Kim T, Song W, Son D, Ono LK, Qi Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 2019;7:2942-64.

4. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

5. Scrosati B, Hassoun J, Sun Y. Lithium-ion batteries. A look into the future. Energy Environ Sci 2011;4:3287-95.

6. Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun 2020;11:2499.

7. Choi JU, Voronina N, Sun Y, Myung S. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion Batteries: yesterday, today, and tomorrow. Adv Energy Mater 2020;10:2002027.

8. Jiang F, Yang S, Liu H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode. SusMat 2021;1:506-36.

9. Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q. A review of composite lithium metal anode for practical applications. Adv Mater Technol 2020;5:1900806.

10. Liu H, Sun X, Cheng X, et al. Working principles of lithium metal anode in pouch cells. Adv Energy Mater 2022;12:2202518.

11. Yin S, Deng W, Chen J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 2021;83:105854.

12. Yan P, Zheng J, Liu J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 2018;3:600-5.

13. Gao Y, Wang X, Geng J, Liang F, Chen M, Zou Z. Research progress on the failure mechanisms and modifications of Ni-rich ternary layered oxide cathode materials for lithium-ion batteries. J Electron Mater 2023;52:72-95.

14. de Biasi L, Schwarz B, Brezesinski T, Hartmann P, Janek J, Ehrenberg H. Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni-rich NCM and Li-rich HE-NCM cathode materials in Li-ion Batteries. Adv Mater 2019;31:e1900985.

15. Geldasa FT, Kebede MA, Shura MW, Hone FG. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review. RSC Adv 2022;12:5891-909.

16. Li S, Yao Z, Zheng J, et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew Chem Int Ed 2020;59:22092-9.

17. Sun J, Cao X, Zhou H. Advanced single-crystal layered Ni-rich cathode materials for next-generation high-energy-density and long-life Li-ion batteries. Phys Rev Mater 2022;6:070201.

18. Wang X, Ruan X, Du CF, Yu H. Developments in surface/interface engineering of Ni-rich layered cathode materials. Chem Rec 2022;22:e202200119.

19. Niu C, Liu D, Lochala JA, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat Energy 2021;6:723-32.

20. Yoon M, Dong Y, Hwang J, et al. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat Energy 2021;6:362-71.

21. Ryu H, Park K, Yoon CS, Sun Y. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater 2018;30:1155-63.

22. Zhang C, Wan J, Li Y, et al. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J Mater Chem A 2020;8:6893-901.

23. Zhu Z, Yu D, Shi Z, et al. Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L−1. Energy Environ Sci 2020;13:1865-78.

24. Wang Y, Zhang Q, Xue Z, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater 2020;10:2001413.

25. Wang X, Wu Q, Li S, et al. Lithium-aluminum-phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond. Energy Stor Mater 2021;37:67-76.

26. Yang X, Wang C, Yan P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Energy Stor Mater 2022;12:2200197.

27. Wang L, Liu T, Wu T, Lu J. Strain-retardant coherent perovskite phase stabilized Ni-rich cathode. Nature 2022;611:61-7.

28. Li J, Zhou Z, Luo Z, et al. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: a review. Sustain Mater Technol 2021;29:e00305.

29. Liang L, Zhang W, Zhao F, et al. Surface/interface structure degradation of Ni-Rich layered oxide cathodes toward lithium-ion batteries: fundamental mechanisms and remedying strategies. Adv Mater Interfaces 2020;7:1901749.

30. Zhang C, Jiang W, He W, Wei W. Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Stor Mater 2021;37:161-89.

31. Zhang J, Li Q, Ouyang C, et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat Energy 2019;4:594-603.

32. Zhu Z, Wang H, Li Y, et al. A surface Se-substituted LiCo[O2-δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv Mater 2020;32:e2005182.

33. Wang L, Ma J, Wang C, et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv Sci 2019;6:1900355.

34. Jiang M, Danilov DL, Eichel R, Notten PHL. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv Energy Mater 2021;11:2103005.

35. Liu J, Wang J, Ni Y, Zhang K, Cheng F, Chen J. Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Mater Today 2021;43:132-65.

36. Ni L, Zhang S, Di A, et al. Challenges and strategies towards single-crystalline Ni-rich layered cathodes. Adv Energy Mater 2022;12:2201510.

37. Wang X, Ding Y, Deng Y, Chen Z. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges. Adv Energy Mater 2020;10:1903864.

38. Chen H, Pei A, Wan J, et al. Tortuosity effects in lithium-metal host anodes. Joule 2020;4:938-52.

39. Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc 2016;138:15443-50.

40. Jie Y, Ren X, Cao R, Cai W, Jiao S. Advanced liquid electrolytes for rechargeable Li metal batteries. Adv Funct Mater 2020;30:1910777.

41. Liu B, Zhang J, Xu W. Advancing lithium metal batteries. Joule 2018;2:833-45.

42. Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev 2020;120:13312-48.

43. Yang X, Xu N, Liu G, et al. Modification and regulation of electrode/electrolyte interface for high specific energy and long life lithium ion batteries. Chin Sci Bull 2021;66:1170-86.

44. Zhao W, Ji Y, Zhang Z, et al. Recent advances in the research of functional electrolyte additives for lithium-ion batteries. Curr Opin Electrochem 2017;6:84-91.

45. Li L, Fu L, Li M, et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J Energy Chem 2022;71:588-94.

46. Birrozzi A, Laszczynski N, Hekmatfar M, von Zamory J, Giffin GA, Passerini S. Beneficial effect of propane sultone and tris(trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide. J Power Sources 2016;325:525-33.

47. Cha J, Han J, Hwang J, Cho J, Choi N. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J Power Sources 2017;357:97-106.

48. Cheng F, Zhang X, Wei P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Sci Bull 2022;67:2225-34.

49. Cui Y, Liang X, Chai J, et al. High performance solid polymer electrolytes for rechargeable batteries: a self-catalyzed strategy toward facile synthesis. Adv Sci 2017;4:1700174.

50. Ehteshami N, Ibing L, Stolz L, Winter M, Paillard E. Ethylene carbonate-free electrolytes for Li-ion battery: study of the solid electrolyte interphases formed on graphite anodes. J Power Sources 2020;451:227804.

51. Han J, Lee JB, Cha A, et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ Sci 2018;11:1552-62.

52. Hu M, Wei J, Xing L, Zhou Z. Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J Appl Electrochem 2012;42:291-6.

53. Jurng S, Brown ZL, Kim J, Lucht BL. Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci 2018;11:2600-8.

54. Liu S, Zhang Q, Wang X, Xu M, Li W, Lucht BL. LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 2020;12:33719-28.

55. Xia L, Lee S, Jiang Y, Xia Y, Chen GZ, Liu Z. Fluorinated electrolytes for Li-ion batteries: the lithium difluoro(oxalato)borate additive for stabilizing the solid electrolyte interphase. ACS Omega 2017;2:8741-50.

56. Ji Y, Li S, Zhong G, et al. Synergistic effects of suberonitrile-LiBOB binary additives on the electrochemical performance of high-voltage LiCoO2 electrodes. J Electrochem Soc 2015;162:A7015.

57. Sun Y, Tao M, Zou Y, et al. 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a bifunctional electrolyte additive for Ni-rich (LiNi0.9Co0.05Mn0.05O2) cathode in Li-ion batteries. J Power Sources 2023;556:232411.

58. Zhang X, Liu G, Zhou K, et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive-pentafluoropyridine. Energy Mater 2022;1:100005.

59. Zhao W, Zheng G, Lin M, et al. Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. J Power Sources 2018;380:149-57.

60. Zhao W, Zheng B, Liu H, et al. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy 2019;63:103815.

61. Zhang B, Wang L, Wang X, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode. Energy Stor Mater 2022;53:492-504.

62. Chen J, Peng Y, Yin Y, et al. High energy density Na-metal batteries enabled by a tailored carbonate-based electrolyte. Energy Environ Sci 2022;15:3360-8.

63. Mao M, Huang B, Li Q, Wang C, He Y, Kang F. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 2020;78:105282.

64. Wang C, Li X, Zhao Y, et al. Manipulating interfacial nanostructure to achieve high-performance all-solid-state lithium-ion batteries. Small Methods 2019;3:1900261.

65. Zhou P, Xia Y, Hou WH, et al. Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry. Nano Lett 2022;22:5936-43.

66. Adams BD, Zheng J, Ren X, Xu W, Zhang J. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv Energy Mater 2018;8:1702097.

67. Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 2008;29:2044-78.

68. Wu B, Liu Q, Mu D, et al. Suppression of lithium dendrite growth by introducing a low reduction potential complex cation in the electrolyte. RSC Adv 2016;6:51738-46.

69. Chen J, Xing L, Yang X, Liu X, Li T, Li W. Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cathode achieved by application of LiPO2F2 electrolyte additive. Electrochim Acta 2018;290:568-76.

70. Cao Z, Zheng X, Qu Q, Huang Y, Zheng H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv Mater 2021;33:e2103178.

71. Li Q, Wang Y, Wang X, et al. Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl Mater Interfaces 2020;12:2319-26.

72. Fan X, Ji X, Han F, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv 2018;4:eaau9245.

73. Parimalam BS, Lucht BL. Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. J Electrochem Soc 2018;165:A251.

74. Yang X, Lin M, Zheng G, et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv Funct Mater 2020;30:2004664.

75. Yang X, Tang S, Zheng C, et al. From contaminated to highly lithiated interfaces: a versatile modification strategy for garnet solid electrolytes. Adv Funct Mater 2023;33:2209120.

76. Han Y, Jung SH, Kwak H, et al. Single- or poly-crystalline Ni-Rich layered cathode, sulfide or halide solid electrolyte: which will be the winners for all-solid-state batteries? Adv Energy Mater 2021;11:2100126.

77. Ryu H, Namkoong B, Kim J, Belharouak I, Yoon CS, Sun Y. Capacity fading mechanisms in Ni-Rich single-crystal NCM cathodes. ACS Energy Lett 2021;6:2726-34.

78. Yan P, Zheng J, Tang ZK, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat Nanotechnol 2019;14:602-8.

79. Zheng W, Shi C, Dai P, et al. A functional electrolyte additive enabling robust interphases in high-voltage Li‖LiNi0.8Co0.1Mn0.1O2 batteries at elevated temperatures. J Mater Chem A 2022;10:21912-22.

80. Ma Y, Chen K, Ma J, et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ Sci 2019;12:273-80.

81. Dupin J, Gonbeau D, Vinatier P, Levasseur A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2000;2:1319-24.

82. Pereira-nabais C, Światowska J, Chagnes A, et al. Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Appl Surf Sci 2013;266:5-16.

83. Yang Y, Wang Y, Xue Z, et al. Meticulous guard: the role of Al/F doping in improving the electrochemical performance of high-voltage spinel cathode. J Materiomics 2021;7:585-92.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/