REFERENCES

1. Sekhon SS, Lee J, Park J. Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review. J Energy Chem 2022;65:149-72.

2. Lyu D, Yao S, Ali A, Tian ZQ, Tsiakaras P, Shen PK. N, S codoped carbon matrix-encapsulated Co9S8 nanoparticles as a highly efficient and durable bifunctional oxygen redox electrocatalyst for rechargeable Zn-air batteries. Adv Energy Mater 2021;11:2101249.

3. Zhang H, Zhao M, Liu H, et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn-air batteries. Nano Lett 2021;21:2255-64.

4. Yang H, Gao S, Rao D, Yan X. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy Stor Mater 2022;46:553-62.

5. Wang X, Raghupathy RKM, Querebillo CJ, et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv Mater 2021;33:e2008752.

6. Ramakrishnan S, Velusamy DB, Sengodan S, et al. Rational design of multifunctional electrocatalyst: an approach towards efficient overall water splitting and rechargeable flexible solid-state zinc-air battery. Appl Catal B Environ 2022;300:120752.

7. Arafat Y, Azhar MR, Zhong Y, Abid HR, Tadé MO, Shao Z. Advances in zeolite imidazolate frameworks (ZIFs) derived bifunctional oxygen electrocatalysts and their application in zinc-air batteries. Adv Energy Mater 2021;11:2100514.

8. Zhao CX, Liu JN, Wang J, Ren D, Li BQ, Zhang Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev 2021;50:7745-78.

9. Zhu Y, Song L, Song N, Li M, Wang C, Lu X. Bifunctional and efficient CoS2-C@MoS2 core-shell nanofiber electrocatalyst for water splitting. ACS Sustain Chem Eng 2019;7:2899-905.

10. Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, et al. An efficient and durable trifunctional electrocatalyst for zinc-air batteries driven overall water splitting. Appl Catal B Environ 2021;297:120405.

11. Wang S, Zhang L, Li X, et al. Sponge-like nickel phosphide-carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res 2017;10:415-25.

12. Ge Y, Dong P, Craig SR, Ajayan PM, Ye M, Shen J. Transforming nickel hydroxide into 3D prussian blue analogue array to obtain Ni2P/Fe2P for efficient hydrogen evolution reaction. Adv Energy Mater 2018;8:1800484.

13. Xu S, Wang M, Saranya G, et al. Pressure-driven catalyst synthesis of Co-doped Fe3C@Carbon nano-onions for efficient oxygen evolution reaction. Appl Catal B Environ 2020;268:118385.

14. Li M, Zhu Y, Wang H, Wang C, Pinna N, Lu X. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting. Adv Energy Mater 2019;9:1803185.

15. Lv Y, Batool A, Wei Y, et al. Homogeneously distributed NiFe alloy nanoparticles on 3D carbon fiber network as a bifunctional electrocatalyst for overall water splitting. ChemElectroChem 2019;6:2497-502.

16. Dionigi F, Zhu J, Zeng Z, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3D-transition metal layered double hydroxides. Angew Chem Int Ed 2021;60:14446-57.

17. Wang Z, Liu W, Hu Y, et al. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl Catal B Environ 2020;272:118959.

18. Liu S, Jiang Y, Yang M, et al. Highly conductive and metallic cobalt-nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting. Nanoscale 2019;11:7959-66.

19. Kumar RS, Prabhakaran S, Ramakrishnan S, et al. Developing outstanding bifunctional electrocatalysts for rechargeable Zn-air batteries using high-purity spinel-type ZnCo2Se4 nanoparticles. Small 2023:e2207096.

20. Lai C, Gong M, Zhou Y, et al. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance. Appl Catal B Environ 2020;274:119086.

21. Shi G, Yu C, Fan Z, Li J, Yuan M. Graphdiyne-supported NiFe layered double hydroxide nanosheets as functional electrocatalysts for oxygen evolution. ACS Appl Mater Interfaces 2019;11:2662-9.

22. Yin P, Wu G, Wang X, et al. NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Res 2021;14:4783-8.

23. Sun H, Yang J, Li J, et al. Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Appl Catal B Environ 2020;272:118988.

24. Lin J, Wang P, Wang H, et al. Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv Sci 2019;6:1900246.

25. Chen F, Ji S, Liu Q, et al. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage. Small 2018;14:e1800791.

26. Liu H, Ma X, Rao Y, et al. Heteromorphic NiCo2S4/Ni3S2/Ni foam as a self-standing electrode for hydrogen evolution reaction in alkaline solution. ACS Appl Mater Interfaces 2018;10:10890-7.

27. Li Q, Wang X, Tang K, Wang M, Wang C, Yan C. Electronic modulation of electrocatalytically active center of Cu7S4 nanodisks by cobalt-doping for highly efficient oxygen evolution reaction. ACS Nano 2017;11:12230-9.

28. Li Y, Zhang H, Jiang M, Zhang Q, He P, Sun X. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv Funct Mater 2017;27:1702513.

29. Ju M, Wang X, Long X, Yang S. Recent advances in transition metal based compound catalysts for water splitting from the perspective of crystal engineering. CrystEngComm 2020;22:1531-40.

30. Yan Y, Wang P, Lin J, Cao J, Qi J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J Energy Chem 2021;58:446-62.

31. Xu W, Zhu S, Liang Y, Cui Z, Yang X, Inoue A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J Mater Chem A 2018;6:5574-9.

32. Yu L, Zhou H, Sun J, et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci 2017;10:1820-7.

33. Hong Y, Kim KM, Ryu JH, et al. Dual-phase engineering of nickel boride-hydroxide nanoparticles toward high-performance water oxidation electrocatalysts. Adv Funct Mater 2020;30:2004330.

34. Huang K, Sun Y, Zhang Y, Wang X, Zhang W, Feng S. Hollow-structured metal oxides as oxygen-related catalysts. Adv Mater 2019;31:e1801430.

35. Wang R, Liu B, You S, et al. Three-dimensional Ni3Se4 flowers integrated with ultrathin carbon layer with strong electronic interactions for boosting oxygen reduction/evolution reactions. Chem Eng J 2022;430:132720.

36. Zheng X, Han X, Liu H, et al. Controllable synthesis of NixSe (0.5 ≤ x ≤ 1) Nanocrystals for efficient rechargeable zinc-air batteries and water splitting. ACS Appl Mater Interfaces 2018;10:13675-84.

37. Douka AI, Xu Y, Yang H, et al. A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv Mater 2020;32:e2002170.

38. Zhao C, Liu J, Li B, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries. Adv Funct Mater 2020;30:2003619.

39. Chen D, Zhu J, Mu X, et al. Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl Catal B Environ 2020;268:118729.

40. Zhang M, Zhang J, Ran S, et al. A robust bifunctional catalyst for rechargeable Zn-air batteries: ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res 2021;14:1175-86.

41. Jiao L, Wan G, Zhang R, Zhou H, Yu SH, Jiang HL. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media. Angew Chem Int Ed 2018;57:8525-9.

42. Yu X, Lai S, Xin S, et al. Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction reaction. Appl Catal B Environ 2021;280:119437.

43. Li G, Sheng K, Lei Y, et al. Facile synthesis of Fe3C-dominated Fe/Fe3C/FeN0.0324 multiphase nanocrystals embedded in nitrogen-modified graphitized carbon as efficient pH-universal catalyst for oxygen reduction reaction and zinc-air battery. Chem Eng J 2023;451:138823.

44. Li Y, Wang Z, Ali Z, et al. Monodisperse Fe3O4 spheres: large-scale controlled synthesis in the absence of surfactants and chemical kinetic process. Sci China Mater 2019;62:1488-95.

45. Zhang J, Tian X, He T, et al. In situ formation of Ni3Se4 nanorod arrays as versatile electrocatalysts for electrochemical oxidation reactions in hybrid water electrolysis. J Mater Chem A 2018;6:15653-8.

46. Li Z, Wang X, Li X, Zhang W. Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries. Chem Eng J 2020;400:126000.

47. Yan L, Xu Z, Liu X, et al. Integrating trifunctional Co@NC-CNTs@NiFe-LDH electrocatalysts with arrays of porous triangle carbon plates for high-power-density rechargeable Zn-air batteries and self-powered water splitting. Chem Eng J 2022;446:137049.

48. Gultom NS, Abdullah H, Hsu C, Kuo D. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem Eng J 2021;419:129608.

49. Meng H, Liu X, Chen X, et al. Hybridization of iron phthalocyanine and MoS2 for high-efficiency and durable oxygen reduction reaction. J Energy Chem 2022;71:528-38.

50. Yuan J, Cheng X, Wang H, et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nanomicro Lett 2020;12:104.

51. Liu C, Han Y, Yao L, et al. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021;17:e2007334.

52. Mei Z, Cai S, Zhao G, et al. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chem Eng J 2022;430:132691.

53. Chen D, Chen X, Cui Z, et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem Eng J 2020;399:125718.

54. Yang J, Tao J, Isomura T, Yanagi H, Moriguchi I, Nakashima N. A comparative study of iron phthalocyanine electrocatalysts supported on different nanocarbons for oxygen reduction reaction. Carbon 2019;145:565-71.

55. Yin Z, Liu X, Cui M, et al. Template synthesis of molybdenum-doped NiFe-layered double hydroxide nanotube as high efficiency electrocatalyst for oxygen evolution reaction. Mater Today Sustain 2022;17:100101.

56. Ding K, Hu J, Luo J, et al. Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries. Nano Energy 2022;91:106675.

57. Li Y, Wang X, Sun M, Zhao Z, Wang Z, Qiu J. NiCo(oxy)selenide electrocatalysts via anionic regulation for high-performance lithium-sulfur batteries. J Mater Chem A 2022;10:5410-9.

58. Yang Y, Wei S, Li Y, Guo D, Liu H, Liu L. Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution. Appl Catal B Environ 2022;314:121491.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/