REFERENCES

1. Zhang S, Chen W. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework. Nat Commun 2022;13:87.

2. Feng J, Li J, Zhang H, et al. Accelerating redox kinetics by ZIF-67 derived amorphous cobalt phosphide electrocatalyst for high-performance lithium-sulfur batteries. Energy Mater 2023;3:300001.

3. Zhou G, Tian H, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc Natl Acad Sci USA 2017;114:840-5.

4. Wang T, He J, Cheng X, Zhu J, Lu B, Wu Y. Strategies toward high-loading lithium-sulfur batteries. ACS Energy Lett 2023;8:116-50.

5. Wu Q, Zhou X, Xu J, Cao F, Li C. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019;13:9520-32.

6. Wu Q, Yao Z, Zhou X, Xu J, Cao F, Li C. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 2020;14:3365-77.

7. He M, Li X, Yang X, et al. Realizing solid-phase reaction in Li-S batteries via localized high-concentration carbonate electrolyte. Adv Energy Mater 2021;11:2101004.

8. Lin Y, Huang S, Zhong L, et al. Organic liquid electrolytes in Li-S batteries: actualities and perspectives. Energy Stor Mater 2021;34:128-47.

9. Fan Y, Yang Z, Hua W, et al. Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium-sulfur batteries. Adv Energy Mater 2017;7:1602380.

10. Fan Y, Liu D, Rahman MM, et al. Repelling polysulfide ions by boron nitride nanosheet coated separators in lithium-sulfur batteries. ACS Appl Energy Mater 2019;2:2620-8.

11. Guo Y, Wu P, Zhong H, et al. Prussian blue analogue/KB-derived Ni/Co/KB composite as a superior adsorption-catalysis separator modification material for Li-S batteries. J Colloid Interface Sci 2022;625:425-34.

12. Li W, Huang M, Li Y, Li C. CoS2 as cathode material for magnesium batteries with dual-salt electrolytes (in Chinese). J Inorg Mater 2022;37:173.

13. Li R, He J, Lei M, Yang M, Li C. High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chem Eng J 2022;446:137294.

14. Ruan J, Sun H, Song Y, et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater 2022;1:100018.

15. Wu Q, Zhou X, Xu J, Cao F, Li C. Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries. J Energy Chem 2019;38:94-113.

16. Li Z, Xiao Z, Wang S, Cheng Z, Li P, Wang R. Engineered interfusion of hollow nitrogen-doped carbon nanospheres for improving electrochemical behavior and energy density of lithium-sulfur batteries. Adv Funct Mater 2019;29:1902322.

17. Wu Q, Shadike Z, Xu J, Cao F, Li C. Integrated reactor architecture of conductive network and catalytic nodes to accelerate polysulfide conversion for durable and high-loading Li-S batteries. Energy Stor Mater 2023;55:73-83.

18. Qi X, Huang L, Luo Y, Chen Q, Chen Y. Ni3Sn2/nitrogen-doped graphene composite with chemisorption and electrocatalysis as advanced separator modifying material for lithium sulfur batteries. J Colloid Interface Sci 2022;628:896-910.

19. Li R, Zhou X, Shen H, Yang M, Li C. Conductive holey MoO2-Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries. ACS Nano 2019;13:10049-61.

20. Shi N, Xi B, Liu J, et al. Dual-functional NbN ultrafine nanocrystals enabling kinetically boosted lithium-sulfur batteries. Adv Funct Mater 2022;32:2111586.

21. Ma F, Zhang X, Sriniva K, et al. NbN nanodot decorated N-doped graphene as a multifunctional interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 2022;10:8578-90.

22. Zhang H, Dai R, Zhu S, Zhou L, Xu Q, Min Y. Bimetallic nitride modified separator constructs internal electric field for high-performance lithium-sulfur battery. Chem Eng J 2022;429:132454.

23. Chen JG. Carbide and nitride overlayers on early transition metal surfaces:  preparation, characterization, and reactivities. Chem Rev 1996;96:1477-98.

24. Li R, Peng H, Wu Q, et al. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries. Angew Chem Int Ed 2020;59:12129-38.

25. Li X, Gao B, Huang X, et al. Conductive mesoporous niobium nitride microspheres/nitrogen-doped graphene hybrid with efficient polysulfide anchoring and catalytic conversion for high-performance lithium-sulfur batteries. ACS Appl Mater Interfaces 2019;11:2961-9.

26. Hu J, Tian J, Li C. Nanostructured carbon nitride polymer-reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Appl Mater Interfaces 2017;9:11615-25.

27. Liu J, Zhang Y, Zhang L, Xie F, Vasileff A, Qiao SZ. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv Mater 2019;31:e1901261.

28. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 1938;60:309-19.

29. Zhou X, Tian J, Wu Q, Hu J, Li C. N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries. Energy Stor Mater 2020;24:644-54.

30. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.

31. Wu Q, Yao Z, Du A, et al. Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries. J Mater Chem A 2021;9:5606-18.

32. Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv Mater 2015;27:5203-9.

33. Chen CY, Peng HJ, Hou TZ, et al. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv Mater 2017;29:1606802.

34. Li Z, Zhou Y, Wang Y, Lu Y. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv Energy Mater 2019;9:1802207.

35. Li L, Pascal TA, Connell JG, et al. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat Commun 2017;8:2277.

36. Yang Q, Hu J, Meng J, Li C. C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ Sci 2021;14:3621-31.

37. Huang X, Wang Z, Knibbe R, et al. Cyclic voltammetry in lithium-sulfur batteries -challenges and opportunities. Energy Technol 2019;7:1801001.

38. Luo C, Liang X, Sun Y, et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium-sulfur batteries. Energy Stor Mater 2020;33:290-7.

39. Feng Y, Zu L, Yang S, et al. Ultrahigh-content Co-P cluster as a dual-atom-site electrocatalyst for accelerating polysulfides conversion in Li-S batteries. Adv Funct Mater 2022;32:2207579.

40. Helen M, Reddy MA, Diemant T, et al. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries. Sci Rep 2015;5:12146.

41. Wu Y, Momma T, Ahn S, Yokoshima T, Nara H, Osaka T. On-site chemical pre-lithiation of S cathode at room temperature on a 3D nano-structured current collector. J Power Sources 2017;366:65-71.

42. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169-86.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/