REFERENCES
1. Jain R, Lakhnot AS, Bhimani K, et al. Nanostructuring versus microstructuring in battery electrodes. Nat Rev Mater 2022;7:736-46.
2. Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 2018;118:6457-98.
3. Xing F, Bi Z, Su F, Liu F, Wu Z. Unraveling the design principles of battery-supercapacitor hybrid devices: from fundamental mechanisms to microstructure engineering and challenging perspectives. Adv Energy Mater 2022;12:2200594.
4. Li M, Lu J, Ji X, et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat Rev Mater 2020;5:276-94.
5. Wu Y, Sun Y, Tong Y, et al. Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy Stor Mater 2021;41:108-32.
6. Li T, Zhao H, Li C, Yu W, Shi Y, Wang R. Recent progress and prospects in anode materials for potassium-ion capacitors. New Carbon Mater 2021;36:253-77.
7. Arnaiz M, Shanmukaraj D, Carriazo D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy Environ Sci 2020;13:2441-9.
8. Zhang T, Mao Z, Shi X, et al. Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors. Energy Environ Sci 2022;15:158-68.
9. Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 2019;5:eaav7412.
10. Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev 2020;120:6358-466.
11. Li Y, Lu Y, Adelhelm P, Titirici MM, Hu YS. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 2019;48:4655-87.
12. Yang J, Zhai Y, Zhang X, et al. Perspective on carbon anode materials for K+ storage: balancing the intercalation-controlled and surface-driven behavior. Adv Energy Mater 2021;11:2100856.
13. Alvin S, Cahyadi HS, Hwang J, Chang W, Kwak SK, Kim J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv Energy Mater 2020;10:2000283.
14. Chen J, Yang B, Liu B, Lang J, Yan X. Recent advances in anode materials for sodium - and potassium-ion hybrid capacitors. Curr Opin Electrochem 2019;18:1-8.
15. Cai P, Momen R, Tian Y, et al. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv Energy Mater 2022;12:2103221.
16. Lian X, Zhou J, You Y, et al. Boosting K+ capacitive storage in dual-doped carbon crumples with B-N moiety via a general protic-salt synthetic strategy. Adv Funct Mater 2022;32:2109969.
17. Zhao S, Yan K, Liang J, et al. Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode materials for high-performance potassium-ion hybrid capacitors. Adv Funct Mater 2021;31:2102060.
18. Zhang C, Liu X, Li Z, et al. Nitrogen-doped accordion-like soft carbon anodes with exposed hierarchical pores for advanced potassium-ion hybrid capacitors. Adv Funct Mater 2021;31:2101470.
19. Sun Y, Wang H, Wei W, et al. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS Nano 2021;15:1652-65.
20. Feng W, Feng N, Liu W, et al. Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance. Adv Energy Mater 2021;11:2003215.
21. Zhong YL, Dai WX, Liu D, et al. Nitrogen and fluorine dual doping of soft carbon nanofibers as advanced anode for potassium ion batteries. Small 2021;17:e2101576.
22. Wang T, Li Q, Feng Q, et al. Carbon defects applied to potassium-ion batteries: a density functional theory investigation. Nanoscale 2021;13:13719-34.
23. Chen Y, Xi B, Huang M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv Mater 2022;34:e2108621.
24. Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 2018;30:1700104.
25. Jiang Y, Yang Y, Xu R, et al. Ultrafast potassium storage in F-induced ultra-high edge-defective carbon nanosheets. ACS Nano 2021;15:10217-27.
26. Qian Y, Li Y, Yi Z, et al. Revealing the double-edged behaviors of heteroatom sulfur in carbonaceous materials for balancing k-storage capacity and stability. Adv Funct Mater 2021;31:2006875.
27. Berenjaghi HM, Mansouri S, Beheshtian J. A DFT study on the potential application of pristine, B and N doped carbon nanocones in potassium-ion batteries. J Mol Model 2021;27:168.
29. Wang H, Xu Z, Kohandehghan A, et al. Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 2013;7:5131-41.
30. Cançado LG, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 2006;88:163106.
31. Zhang F, Zhang T, Yang X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci 2013;6:1623.
32. Shao M, Li C, Li T, et al. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv Funct Mater 2020;30:2006561.
33. Kong L, Zhu J, Shuang W, Bu X. Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv Energy Mater 2018;8:1801515.
34. Li T, Zhang J, Li C, et al. Nitrogen and phosphorous co-doped hierarchical meso - microporous carbon nanospheres with extraordinary lithium storage for high-performance lithium-ion capacitors. Sci China Mater 2022;65:2363-72.
35. Ma X, Xiao N, Xiao J, et al. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021;179:33-41.
36. Zhou X, Chen L, Zhang W, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett 2019;19:4965-73.
37. Soto FA, Yan P, Engelhard MH, et al. Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv Mater 2017;29:1606860.
38. Fan L, Ma R, Zhang Q, Jia X, Lu B. Graphite anode for a potassium-ion battery with unprecedented performance. Angew Chem Int Ed 2019;58:10500-5.
39. Liu Y, Sun Z, Sun X, et al. Construction of hierarchical nanotubes assembled from ultrathin V3S4@C nanosheets towards alkali-ion batteries with ion-dependent electrochemical mechanisms. Angew Chem Int Ed 2020;59:2473-82.
40. Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater 2018;8:1703496.
41. Jin H, Wang H, Qi Z, et al. A black phosphorus-graphite composite anode for Li-/Na-/K-Ion batteries. Angew Chem Int Ed 2020;59:2318-22.
42. Brezesinski T, Wang J, Tolbert SH, Dunn B. Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 2010;9:146-51.
43. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 2013;12:518-22.
44. Zong W, Guo H, Ouyang Y, et al. Topochemistry-driven synthesis of transition-metal selenides with weakened van der waals force to enable 3D-printed Na-ion hybrid capacitors. Adv Funct Mater 2022;32:2110016.
45. Tao L, Yang Y, Wang H, et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Stor Mater 2020;27:212-25.
46. Zhang W, Ming J, Zhao W, et al. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv Funct Mater 2019;29:1903641.
47. Zong W, Chui N, Tian Z, et al. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv Sci 2021;8:2004142.
48. Qian Y, Jiang S, Li Y, et al. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew Chem Int Ed 2019;58:18108-15.
49. Share K, Cohn AP, Carter RE, Pint CL. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 2016;8:16435-9.
50. Fan L, Chen S, Ma R, et al. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 2018;14:e1801806.
51. Wang RT, Wang S, Jin D, et al. Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Stor Mater 2017;9:195-205.
52. Fan L, Lin K, Wang J, Ma R, Lu B. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv Mater 2018;30:e1800804.
53. Chen Z, Li W, Yang J, et al. Excellent electrochemical performance of potassium ion capacitor achieved by a high nitrogen doped activated carbon. J Electrochem Soc 2020;167:050506.
54. Liu X, Elia GA, Qin B, et al. High-power Na-ion and K-ion hybrid capacitors exploiting cointercalation in graphite negative electrodes. ACS Energy Lett 2019;4:2675-82.
55. Qiu D, Guan J, Li M, et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater 2019;29:1903496.
56. Luan Y, Hu R, Fang Y, et al. Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nanomicro Lett 2019;11:30.
57. Li X, Chen M, Wang L, et al. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horiz 2020;5:1586-95.
58. Xu Z, Wu M, Chen Z, et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv Sci 2019;6:1802272.