REFERENCES
1. Kumar R, Bag M. Hybrid halide perovskite-based electrochemical supercapacitors: recent progress and perspective. Energy Technol 2022;10:2100889.
2. Narayanan S, Parikh N, Tavakoli MM, et al. Metal halide perovskites for energy storage applications. Eur J Inorg Chem 2021;2021:1201-12.
3. Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y. Prospects for metal halide perovskite-based tandem solar cells. Nat Photon 2021;15:411-25.
4. Kostopoulou A, Kymakis E, Stratakis E. Perovskite nanostructures for photovoltaic and energy storage devices. J Mater Chem A 2018;6:9765-98.
5. Xia HR, Sun WT, Peng LM. Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem Commun 2015;51:13787-90.
6. Kostopoulou A, Vernardou D, Makri D, Brintakis K, Savva K, Stratakis E. Highly stable metal halide perovskite microcube anodes for lithium-air batteries. J Power Sources 2020;3:100015.
7. Paul T, Maiti S, Chatterjee BK, et al. Electrochemical performance of 3D network CsPbBr3 perovskite anodes for Li-ion batteries: experimental venture with theoretical expedition. J Phys Chem C 2021;125:16892-902.
8. Liu S, Zhang K, Tan L, Qi S, Liu G, Chen J, et al. All-inorganic halide perovskite CsPbBr3@CNTs composite enabling superior lithium storage performance with pseudocapacitive contribution. Electrochim Acta 2021;367:137352.
9. Samu GF, Scheidt RA, Kamat PV, Janáky C. Electrochemistry and spectroelectrochemistry of lead halide perovskite films: materials science aspects and boundary conditions. Chem Mater 2018;30:561-9.
10. Zhou S, Li L, Yu H, Chen J, Wong C, Zhao N. Thin film electrochemical capacitors based on organolead triiodide perovskite. Adv Electron Mater 2016;2:1600114.
11. Wang T, Lei J, Wang Y, et al. Approaches to enhancing electrical conductivity of pristine metal-organic frameworks for supercapacitor applications. Small 2022;18:2203307.
12. Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011;332:1537-41.
13. Wang T, Chen HC, Yu F, Zhao XS, Wang H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Stor Mater 2019;16:545-73.
14. Choudhary N, Li C, Moore J, et al. Supercapacitors: asymmetric supercapacitor electrodes and devices. Adv Mater 2017;29:1605336.
15. Popoola I, Gondal M, Oloore L, Popoola A, AlGhamdi J. Fabrication of organometallic halide perovskite electrochemical supercapacitors utilizing quasi-solid-state electrolytes for energy storage devices. Electrochim Acta 2020;332:135536.
16. Pious JK, Katre A, Muthu C, Chakraborty S, Krishna S, Vijayakumar C. Zero-dimensional lead-free hybrid perovskite-like material with a quantum-well structure. Chem Mater 2019;31:1941-5.
17. Li T, Mallows J, Adams K, Nichol GS, Thijssen JH, Robertson N. Thiourea bismuth iodide: crystal structure, characterization and high performance as an electrode material for supercapacitors. Batteries Supercaps 2019;2:568-75.
18. Maji P, Ray A, Sadhukhan P, Roy A, Das S. Fabrication of symmetric supercapacitor using cesium lead iodide (CsPbI3) microwire. Mater Lett 2018;227:268-71.
19. Thakur S, Paul T, Maiti S, Chattopadhyay KK. All-inorganic CsPbBr3 perovskite as potential electrode material for symmetric supercapacitor. Solid State Sci 2021;122:106769.
20. Chen L, Dong X, Wang Y, Xia Y. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun 2016;7:11741.
21. Li J, Wang S, Chang J, Feng L. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv Powder Technol 2022;1:100030.
22. Yao D, Zhang C, Pham ND, et al. Hindered formation of photoinactive δ-FAPbI3 phase and hysteresis-free mixed-cation planar heterojunction perovskite solar cells with enhanced efficiency via potassium incorporation. J Phys Chem Lett 2018;9:2113-20.
23. Wang Y, Zhou W, Kang Q, et al. Patterning islandlike MnO2 arrays by breath-figure templates for flexible transparent supercapacitors. ACS Appl Mater Interfaces 2018;10:27001-8.
24. Chu D, Li F, Song X, et al. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J Colloid Interface Sci 2020;568:130-8.
25. Zhang L, Hu X, Wang Z, Sun F, Dorrell DG. A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sustain Energy Rev 2018;81:1868-78.
26. Hoang MT, Pannu AS, Tang C, et al. Potassium doping to enhance green photoemission of light-emitting diodes based on CsPbBr3 perovskite nanocrystals. Adv Opt Mater 2020;8:2000742.
27. Hoang MT, Pannu AS, Yang Y, et al. Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett 2022;14:69.
28. Kostopoulou A, Brintakis K, Nasikas NK, Stratakis E. Perovskite nanocrystals for energy conversion and storage. Nanophotonics 2019;8:1607-40.
29. Hsieh YT, Lin YF, Liu WR. Enhancing the water resistance and stability of CsPbBr3 perovskite quantum dots for light-emitting-diode applications through encapsulation in waterproof polymethylsilsesquioxane aerogels. ACS Appl Mater Interfaces 2020;12:58049-59.
30. Zhu Y, Cao C, Tao S, Chu W, Wu Z, Li Y. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep 2014;4:5787.
31. Barbieri O, Hahn M, Herzog A, Kötz R. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 2005;43:1303-10.
32. Mohanadas D, Mohd Abdah MAA, Azman NHN, Ravoof TBSA, Sulaiman Y. Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Sci Rep 2021;11:11747.
33. Lin T, Chen IW, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015;350:1508-13.
34. Yen MC, Lee CJ, Liu KH, et al. All-inorganic perovskite quantum dot light-emitting memories. Nat Commun 2021;12:4460.
35. Gomez CM, Pan S, Braga HM, et al. Possible charge-transfer-induced conductivity enhancement in TiO2 microtubes decorated with perovskite CsPbBr3 nanocrystals. Langmuir 2020;36:5408-16.
36. Chen C, Fu Q, Guo P, et al. Ionic transport characteristics of large-size CsPbBr3 single crystals. Mater Res Express 2019;6:115808.
37. Pu X, Zhao D, Fu C, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew Chem Int Ed 2021;60:21310-8.
38. Jiang Q, Chen M, Li J, et al. Electrochemical doping of halide perovskites with ion intercalation. ACS Nano 2017;11:1073-9.
39. Hwang JH, Islam MA, Choi H, et al. Improving electrochemical Pb2+ detection using a vertically aligned 2D MoS2 nanofilm. Anal Chem 2019;91:11770-7.
40. Zhang X, Lin S, Chen Z, Megharaj M, Naidu R. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res 2011;45:3481-8.
41. Pala IR, Brock SL. ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water. ACS Appl Mater Interfaces 2012;4:2160-7.
42. Woo YW, Jung Y, Kim GY, Kim S, Walsh A. Factors influencing halide vacancy transport in perovskite solar cells. Discov Mater 2022;2:8.
43. Nur’aini A, Lee S, Oh I. Ion migration in metal halide perovskites. J Electrochem Sci Technol 2022;13:71-7.
44. Li N, Jia Y, Guo Y, Zhao N. Ion migration in perovskite light-emitting diodes: mechanism, characterizations, and material and device engineering. Adv Mater 2022;34:e2108102.
45. Cai J, Zhao T, Chen M, et al. Ion migration in the all-inorganic perovskite CsPbBr3 and its impacts on photodetection. J Phys Chem C 2022;126:10007-13.
46. Hussain T, Fatima K, Anjum A, et al. Experimental evidence of ion migration in aged inorganic perovskite solar cells using non-destructive RBS depth profiling. Mater Adv 2022;3:7846-53.