REFERENCES

1. Evarts EC. Lithium batteries: to the limits of lithium. Nature 2015;526:S93-5.

2. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29.

3. Qian J, Wu C, Cao Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv Energy Mater 2018;8:1702619.

4. Fang Y, Luan D, Lou XW. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv Mater 2020;32:e2002976.

5. Li Y, Yang Y, Lu Y, et al. Ultralow-concentration electrolyte for na-ion batteries. ACS Energy Lett 2020;5:1156-8.

6. Piernas Muñoz MJ, Castillo Martínez E. Electrochemical performance of prussian blue and analogues in aqueous rechargeable batteries. In Prussian Blue Based Batteries; 2018, pp. 23-44.

7. Wessells CD, Peddada SV, Huggins RA, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 2011;11:5421-5.

8. Peng J, Gao Y, Zhang H, et al. Ball milling solid-state synthesis of highly crystalline prussian blue analogue Na2-xMnFe(CN)6 cathodes for all-climate sodium-ion batteries. Angew Chem Int Ed 2022;61:e202205867.

9. Imanishi N, Morikawa T, Kondo J, et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery. J Power Sources 1999;79:215-9.

10. Pramudita JC, Schmid S, Godfrey T, et al. Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6](1-x)·yH2O and FeCo(CN)6. Phys Chem Chem Phys 2014;16:24178-87.

11. Peng J, Zhang W, Liu Q, et al. Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv Mater 2022;34:2108384.

12. Wu X, Wu C, Wei C, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 2016;8:5393-9.

13. Shang Y, Li X, Song J, et al. Unconventional Mn vacancies in Mn-Fe prussian blue analogs: suppressing jahn-teller distortion for ultrastable sodium storage. Chem 2020;6:1804-18.

14. Jiang M, Hou Z, Wang J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage. Nano Energy 2022;102:107708.

15. Peng J, Wang J, Yi H, et al. A Dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv Energy Mater 2018;8:1702856.

16. Wang W, Gang Y, Hu Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun 2020;11:980.

17. Gong W, Wan M, Zeng R, et al. Ultrafine prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Technol 2019;7:1900108.

18. Han B, Zhang D, Liu X, et al. Ordered assembly of potassium cobalt hexacyanoferrate hollow multivoid nanocuboid arrays for high-performance aqueous K-ion batteries towards all-climate energy storage. J Mater Chem A 2022;10:13508-18.

19. Tang Y, Li W, Feng P, et al. Investigation of alkali-ion (Li, Na and K) intercalation in manganese hexacyanoferrate KxMnFe(CN)6 as cathode material. Chem Eng J 2020;396:125269.

20. Shao T, Li C, Liu C, et al. Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. J Mater Chem A 2019;7:1749-55.

21. Feng F, Chen S, Zhao S, et al. Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries. Chem Eng J 2021;411:128518.

22. Gebert F, Cortie DL, Bouwer JC, et al. Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries. Angew Chem Int Ed 2021;60:18519-26.

23. Qiao Y, Wei G, Cui J, et al. Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion batteries. Chem Commun 2019;55:549-52.

24. Kim J, Yi SH, Li L, et al. Enhanced stability and rate performance of zinc-doped cobalt hexacyanoferrate (CoZnHCF) by the limited crystal growth and reduced distortion. J Energy Chem 2022;69:649-58.

25. Wang B, Han Y, Chen Y, et al. Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J Mater Chem A 2018;6:8947-54.

26. Peng J, Zhang B, Hua W, et al. A disordered Rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan. Angew Chem Int Ed 2023;62:e202215865.

27. Hu J, Tao H, Chen M, et al. Interstitial water improves structural stability of iron hexacyanoferrate for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 2022;14:12234-42.

28. Wang W, Gang Y, Peng J, et al. Effect of eliminating water in prussian blue cathode for sodium-ion batteries. Adv Funct Mater 2022;32:2111727.

29. Bhatt P, Thakur N, Mukadam MD, et al. Evidence for the existence of oxygen clustering and understanding of structural disorder in prussian blue analogues molecular magnet M1.5[Cr(CN)6]·zH2O (M = Fe and Co): reverse monte carlo simulation and neutron diffraction study. J Phys Chem C 2013;117:2676-87.

30. Wardecki D, Ojwang DO, Grins J, et al. Neutron diffraction and EXAFS studies of K2x/3Cu[Fe(CN)6]2/3·nH2O. Cryst Growth Des 2017;17:1285-92.

31. Oumellal Y, Delpuech N, Mazouzi D, et al. The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 2011;21:6201-8.

32. Liu W, Yang M, Wu H, et al. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 2005;8:A100-3.

33. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B 1993;47:558-61.

34. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

35. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-68.

36. Chadi DJ. Special points for Brillouin-zone integrations. Phys Rev B 1977;16:1746-47.

37. Jain A, Hautier G, Ong SP, et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B 2011;84:045115.

38. Smidstrup S, Pedersen A, Stokbro K, et al. Improved initial guess for minimum energy path calculations. J Chem Phys 2014;140:214106.

39. Xu Y, Wan J, Huang L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for na-ion batteries. Adv Energy Mater 2019;9:1803158.

40. Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst 1967;22:151-2.

41. Loopstra BO, Rietveld HM. Further refinement of the structure of WO. Acta Cryst 1969;B25:1420-1.

42. Feng Z, Hou Q, Zheng Y, et al. Method of artificial intelligence algorithm to improve the automation level of Rietveld refinement. Comp Mater Sci 2019;156:310-4.

43. Cui X, Feng Z, Jin Y, et al. AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. J Appl Cryst 2015;48:1581-6.

44. McCusker LB, Von Dreele RB, Cox DE, et al. Rietveld refinement guidelines. J Appl Cryst 1999;32:36-50.

45. Toby BH. R factors in Rietveld analysis: how good is good enough? Powder Diffr 2006;21:67-70.

46. Peng J, Ou M, Yi H, et al. Defect-free-induced Na+ disordering in electrode materials. Energy Environ Sci 2021;14:3130-40.

47. Takachi M, Matsuda T, Moritomo Y. Cobalt hexacyanoferrate as cathode material for Na+secondary battery. Appl Phys Express 2013;6:025802.

48. Li W, Zhang F, Xiang X, et al. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6] Nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. J Phys Chem C 2017;121:27805-12.

49. Luo D, Lei P, Tian G, et al. Insight into electrochemical properties and reaction mechanism of a cobalt-rich prussian blue analogue cathode in a NaSO3CF3 electrolyte for aqueous sodium-ion batteries. J Phys Chem C 2020;124:5958-65.

50. Fang D, He F, Xie J, et al. Calibration of binding energy positions with C1s for XPS results. J Wuhan Univ Technol-Mat Sci Ed 2020;35:711-8.

51. Quan J, Xu E, Zhu H, et al. A Ni-doping-induced phase transition and electron evolution in cobalt hexacyanoferrate as a stable cathode for sodium-ion batteries. Phys Chem Chem Phys 2021;23:2491-99.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/