REFERENCES

1. Ma L, Yu T, Tzoganakis E, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: recent progress and perspective. Adv Energy Mater 2018;8:1800348.

2. Grande L, Paillard E, Hassoun J, et al. The lithium/air battery: still an emerging system or a practical reality? Adv Mater 2015;27:784-800.

3. Liu DH, Bai Z, Li M, et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem Soc Rev 2020;49:5407-45.

4. Chen J, Li D, Lin K, Ke X, Cheng Y, Shi Z. Building a stable artificial solid electrolyte interphase on lithium metal anodes toward long-life Li-O2 batteries. J Power Sources 2022;540:231603.

5. Wang D, Mu X, He P, Zhou H. Materials for advanced Li-O2 batteries: explorations, challenges and prospects. Mater Today 2019;26:87-99.

6. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.

7. Wang Q, Wang H, Wu J, Zhou M, Liu W, Zhou H. Advanced electrolyte design for stable lithium metal anode: from liquid to solid. Nano Energy 2021;80:105516.

8. Liu K, Wang Z, Shi L, Jungsuttiwong S, Yuan S. Ionic liquids for high performance lithium metal batteries. J Energy Chem 2021;59:320-33.

9. Stettner T, Balducci A. Protic ionic liquids in energy storage devices: past, present and future perspective. Energy Stor Mater 2021;40:402-14.

10. Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A 2016;4:10038-69.

11. Knipping E, Aucher C, Guirado G, Aubouy L. Room temperature ionic liquids versus organic solvents as lithium-oxygen battery electrolytes. New J Chem 2018;42:4693-9.

12. Yang Q, Zhang Z, Sun XG, Hu YS, Xing H, Dai S. Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 2018;47:2020-64.

13. Nakamoto H, Suzuki Y, Shiotsuki T, et al. Ether-functionalized ionic liquid electrolytes for lithium-air batteries. J Power Sources 2013;243:19-23.

14. Osada I, de Vries H, Scrosati B, Passerini S. Ionic-liquid-based polymer electrolytes for battery applications. Angew Chem Int Ed 2016;55:500-13.

15. Ulissi U, Elia GA, Jeong S, et al. Low-polarization lithium-oxygen battery using [DEME][TFSI] ionic liquid electrolyte. ChemSusChem 2018;11:229-36.

16. Alvarez-tirado M, Castro L, Guéguen A, Mecerreyes D. Iongel soft solid electrolytes based on [DEME][TFSI] Ionic liquid for low polarization lithium-O2 batteries. Batteries Supercaps 2022;5:e202200049.

17. Vanhoutte G, Hojniak SD, Bardé F, Binnemans K, Fransaer J. Fluorine-functionalized ionic liquids with high oxygen solubility. RSC Adv 2018;8:4525-30.

18. Li D, Zhang Q, Shen Z, et al. 3D hexapod-shaped Co-ZIFs-S derived co nanoparticles embedded into nitrogen and sulfur co-doped carbon decorated with ruthenium nanoparticles as efficient catalyst for rechargeable lithium oxygen battery. Nano Energy 2022;91:106644.

19. Liu Y, Cai J, Zhou J, et al. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries. eScience 2022;2:389-98.

20. Kwak WJ, Rosy, Sharon D, et al. Lithium-oxygen batteries and related systems: potential, status, and future. Chem Rev 2020;120:6626-83.

21. Tomé LC, Porcarelli L, Bara JE, Forsyth M, Mecerreyes D. Emerging iongel materials towards applications in energy and bioelectronics. Mater Horiz 2021;8:3239-65.

22. Zhao M, Wu B, Lall-ramnarine SI, et al. Structural analysis of ionic liquids with symmetric and asymmetric fluorinated anions. J Chem Phys 2019;151:074504.

23. Zhao H, Liu X, Chi Z, et al. Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based Binder-free cathode. Appl Surf Sci 2021;565:150612.

24. Jung KN, Lee JI, Jung JH, Shin KH, Lee JW. A quasi-solid-state rechargeable lithium-oxygen battery based on a gel polymer electrolyte with an ionic liquid. Chem Commun 2014;50:5458-61.

25. Pan J, Li H, Sun H, et al. A lithium-air battery stably working at high temperature with high rate performance. Small 2018;14:1703454.

26. Amanchukwu CV, Chang H, Gauthier M, Feng S, Batcho TP, Hammond PT. One-electron mechanism in a gel-polymer electrolyte Li-O2 battery. Chem Mater 2016;28:7167-77.

27. Gouveia ASL, Tomé LC, Lozinskaya EI, Shaplov AS, Vygodskii YS, Marrucho IM. Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes. Phys Chem Chem Phys 2017;19:28876-84.

28. Costa AJ, Soromenho MR, Shimizu K, et al. Density, thermal expansion and viscosity of cholinium-derived ionic liquids. Chemphyschem 2012;13:1902-9.

29. Rajkumar T, Ranga Rao G. Synthesis and characterization of hybrid molecular material prepared by ionic liquid and silicotungstic acid. Mater Chem Phys 2008;112:853-7.

30. Paschoal VH, Faria LFO, Ribeiro MCC. Vibrational spectroscopy of ionic liquids. Chem Rev 2017;117:7053-112.

31. Gao X, Wu F, Mariani A, Passerini S. Concentrated ionic-liquid-based electrolytes for high-voltage lithium batteries with improved performance at room temperature. ChemSusChem 2019;12:4185-93.

32. Pal P, Ghosh A. Solid-state gel polymer electrolytes based on ionic liquids containing imidazolium cations and tetrafluoroborate anions for electrochemical double layer capacitors: Influence of cations size and viscosity of ionic liquids. J Power Sources 2018;406:128-40.

33. Vijayakumar V, Anothumakkool B, Kurungot S, Winter M, Nair JR. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ Sci 2021;14:2708-88.

34. Wang J, Zheng Q, Fang M, Ko S, Yamada Y, Yamada A. Concentrated electrolytes widen the operating temperature range of lithium-ion batteries. Adv Sci 2021;8:e2101646.

35. Olmedo-martínez JL, Porcarelli L, Alegría Á, Mecerreyes D, Müller AJ. High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends. Macromolecules 2020;53:4442-53.

36. Guzmán-gonzález G, Ramos-sánchez G, Camacho-forero LE, González I. Charge delocalization on BO4- centers to improve conductivity on single lithium ion conducting polymer electrolytes: a computational/experimental approach. J Phys Chem C 2019;123:17686-94.

37. Aziz SB, Woo TJ, Kadir M, Ahmed HM. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mater Dev 2018;3:1-17.

38. Singh VK, Shalu, Balo L, Gupta H, Singh SK, Singh RK. Solid polymer electrolytes based on Li+/ionic liquid for lithium secondary batteries. J Solid State Electrochem 2017;21:1713-23.

39. Cai Y, Zhang Q, Lu Y, Hao Z, Ni Y, Chen J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable li deposition for high-performance Li-O2 Batteries. Angew Chem Int Ed 2021;60:25973-80.

40. Tong J, Wu S, von Solms N, et al. The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes. Front Chem 2019;7:945.

41. Bennington P, Deng C, Sharon D, et al. Role of solvation site segmental dynamics on ion transport in ethylene-oxide based side-chain polymer electrolytes. J Mater Chem A 2021;9:9937-51.

42. Periyapperuma K, Arca E, Harvey S, et al. Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid. J Mater Chem A 2020;8:3574-9.

43. Eshetu GG, Mecerreyes D, Forsyth M, Zhang H, Armand M. Polymeric ionic liquids for lithium-based rechargeable batteries. Mol Syst Des Eng 2019;4:294-309.

44. Karuppasamy K, Theerthagiri J, Vikraman D, et al. Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polymers 2020;12:918.

45. Ray A, Saruhan B. Application of ionic liquids for batteries and supercapacitors. Materials 2021;14:2942.

46. Chen Z, Kim G, Kim J, et al. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv Energy Mater 2021;11:2101339.

47. Kang D, Hart N, Xiao M, P. Lemmon J. Short circuit of symmetrical li/li cell in li metal anode research. Acta Physico Chimica Sinica 2021;37:1-6.

48. Peled E, Menkin S. Review-SEI: past, present and future. J Electrochem Soc 2017;164:A1703-19.

49. Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput Mater 2018:4.

50. Rakov DA, Chen F, Ferdousi SA, et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat Mater 2020;19:1096-101.

51. Frenck L. Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous lithium-air battery. Grenoble, France: Universite Grenoble Alpes, 2016.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/