REFERENCES

1. De Wolf S, Holovsky J, Moon SJ, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 2014;5:1035-9.

2. Kim G, Petrozza A. Defect tolerance and intolerance in metal-halide perovskites. Adv Energy Mater 2020;10:2001959.

3. McMeekin DP, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016;351:151-5.

4. Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013;342:341-4.

5. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 2009;131:6050-1.

6. Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021;598:444-50.

7. Zhang X, Ren X, Liu B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci 2017;10:2095-102.

8. Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc 2015;137:7843-50.

9. Quan LN, Yuan M, Comin R, et al. Ligand-stabilized reduced-dimensionality perovskites. J Am Chem Soc 2016;138:2649-55.

10. Stoumpos CC, Cao DH, Clark DJ, et al. Ruddlesden-popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater 2016;28:2852-67.

11. Tsai H, Nie W, Blancon JC, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016;536:312-6.

12. Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells. J Am Chem Soc 2016;138:15829-32.

13. Bella F, Griffini G, Correa-Baena JP, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016;354:203-6.

14. Zhu H, Ren Y, Pan L, et al. Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J Am Chem Soc 2021;143:3231-7.

15. Leng K, Abdelwahab I, Verzhbitskiy I, et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat Mater 2018;17:908-14.

16. Mao LL, Stoumpos CC, Kanatzidis MG. Two-dimensional hybrid halide perovskites: principles and promises. J Am Chem Soc 2019;141:1171-90.

17. Xi J, Spanopoulos I, Bang K, et al. Alternative organic spacers for more efficient perovskite solar cells containing ruddlesden-popper phases. J Am Chem Soc 2020;142:19705-14.

18. Zheng H, Liu G, Zhu L, et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv Energy Mater 2018;8:1800051.

19. Zhang J, Qin J, Wang M, et al. Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells. Joule 2019;3:3061-71.

20. Zhao X, Liu T, Kaplan AB, Yao C, Loo YL. Accessing highly oriented two-dimensional perovskite films via solvent-vapor annealing for efficient and stable solar cells. Nano Lett 2020;20:8880-9.

21. Xu Z, Lu D, Liu F, et al. Phase distribution and carrier dynamics in multiple-ring aromatic spacer-based two-dimensional ruddlesden-popper perovskite solar cells. ACS Nano 2020;14:4871-81.

22. Lai H, Kan B, Liu T, et al. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J Am Chem Soc 2018;140:11639-46.

23. Lai H, Lu D, Xu Z, Zheng N, Xie Z, Liu Y. Organic-salt-assisted crystal growth and orientation of quasi-2D ruddlesden-popper perovskites for solar cells with efficiency over 19%. Adv Mater 2020;32:e2001470.

24. Liu Y, Akin S, Pan L, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci Adv 2019;5:eaaw2543.

25. Pan H, Zhao X, Gong X, Shen Y, Wang M. Atomic-scale tailoring of organic cation of layered ruddlesden-popper perovskite compounds. J Phys Chem Lett 2019;10:1813-9.

26. Wei Y, Chen B, Zhang F, et al. Compositionally designed 2D ruddlesden-popper perovskites for efficient and stable solar cells. Solar RRL 2021;5:2000661.

27. Wang Z, Wei Q, Liu X, et al. Spacer cation tuning enables vertically oriented and graded quasi-2D perovskites for efficient solar cells. Adv Funct Mater 2021;31:2008404.

28. Li D, Xing Z, Huang L, et al. Spontaneous formation of upper gradient 2D structure for efficient and stable quasi-2D perovskites. Adv Mater 2021;33:e2101823.

29. Zhou X, Wang Y, Li C, Wu T. Doping amino-functionalized ionic liquid in perovskite crystal for enhancing performances of hole-conductor free solar cells with carbon electrode. Chem Eng J 2019;372:46-52.

30. Zhao H, Han Y, Xu Z, et al. A Novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv Energy Mater 2019;9:1902279.

31. Shao M, Bie T, Yang L, et al. Over 21% efficiency stable 2D perovskite solar cells. Adv Mater 2022;34:e2107211.

32. Zhu X, Du M, Feng J, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew Chem Int Ed 2021;60:4238-44.

33. Liang J, Zhao P, Wang C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Am Chem Soc 2017;139:14009-12.

34. Thiesbrummel J, Le Corre VM, Peña-camargo F, et al. Universal current losses in perovskite solar cells due to mobile ions. Adv Energy Mater 2021;11:2101447.

35. Shi J, Gao Y, Gao X, et al. Fluorinated low-dimensional ruddlesden-popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv Mater 2019;31:e1901673.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/