REFERENCES
1. Asadi M, Sayahpour B, Abbasi P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018;555:502-6.
2. Zhu X, Meng F, Zhang Q, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain 2021;4:392-401.
3. Niu Y, Yu Z, Zhou Y, et al. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: a nano-interlayer/Li pre-reduction strategy. Nano Res 2022;15:7180-9.
4. Yu Z, Zhou L, Cheng Y, et al. Preset lithium source electrolyte boosts SiO anode performance for lithium-ion batteries. ACS Sustain Chem Eng 2022;10:10351-60.
5. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:eaan8285.
6. Cheng Y, Wei K, Yu Z, et al. Ternary Si-SiO-Al composite films as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:34447-56.
7. Chi X, Li M, Di J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021;592:551-57.
8. Ding Z, Zhang C, Xu S, et al. Stable heteroepitaxial interface of Li-rich layered oxide cathodes with enhanced lithium storage. Energy Storage Mater 2019;21:69-76.
9. Yu Z, Tian B, Li Y, et al. Lithium titanate matrix-supported nanocrystalline silicon film as an anode for lithium-ion batteries. ACS Appl Mater Interfaces 2019;11:534-40.
10. Feng X, Wu H, Gao B, Świętosławski M, He X, Zhang Q. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res 2022;15:352-60.
11. Ke C, Shao R, Zhang Y, et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv Funct Mater 2022;32:2205635.
12. Fan X, Hu G, Zhang B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 2020;70:104450.
13. Kim H, Kim MG, Jeong HY, Nam H, Cho J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 2015;15:2111-9.
14. Hussain N, Li M, Tian B, Wang H. Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation. Adv Mater 2021;33:e2102164.
15. Tsai P, Wen B, Wolfman M, et al. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. Energy Environ Sci 2018;11:860-71.
16. Kim JH, Ryu HH, Kim SJ, Yoon CS, Sun YK. Degradation mechanism of highly Ni-Rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9. ACS Appl Mater Interfaces 2019;11:30936-42.
17. Kim A, Strauss F, Bartsch T, et al. Stabilizing effect of a hybrid surface coating on a Ni-Rich NCM cathode material in all-solid-state batteries. Chem Mater 2019;31:9664-72.
18. Heenan TMM, Wade A, Tan C, et al. Identifying the origins of microstructural defects such as cracking within Ni-Rich NMC811 cathode particles for lithium-ion batteries. Adv Energy Mater 2020;10:2002655.
19. Yu Z, Qu X, Wan T, et al. Synthesis and mechanism of high structural stability of nickel-rich cathode materials by adjusting li-excess. ACS Appl Mater Interfaces 2020;12:40393-403.
20. Fan X, Chen L, Ji X, et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018;4:174-85.
21. Zhu Z, Liang Y, Hu H, et al. Enhanced structural and electrochemical stability of LiNi0.83Co0.11Mn0.06O2 cathodes by zirconium and aluminum co-doping for lithium-ion battery. J Power Sources 2021;498:229857.
22. Lee S, Kim M, Jeong JH, et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: improved thermal stability and high-voltage performance. J Power Sources 2017;360:206-14.
23. Han S, Zhang H, Fan C, Fan W, Yu L. 1,4-Dicyanobutane as a film-forming additive for high-voltage in lithium-ion batteries. Solid State Ionics 2019;337:63-9.
24. Fu J, Mu D, Wu B, et al. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode at high cutoff voltage by modifying electrode/electrolyte interface with lithium metasilicate. Electrochim Acta 2017;246:27-34.
25. Yang J, Huang B, Yin J, et al. Structure integrity endowed by a ti-containing surface layer towards ultrastable LiNi0.8Co0.15Al0.05O2 for all-solid-state lithium batteries. J Electrochem Soc 2016;163:A1530-4.
26. Wang Y, Sun Y, Liu S, Li G, Gao X. Na-Doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for li-ion batteries. ACS Appl Energy Mater 2018;1:3881-9.
27. Yu Z, Tong Q, Zhao G, Zhu G, Tian B, Cheng Y. Combining surface holistic Ge coating and subsurface Mg doping to enhance the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes. ACS Appl Mater Interfaces 2022;14:25490-500.
28. Huang Y, Zhu Y, Fu H, et al. Mg-pillared LiCoO2: towards stable cycling at 4.6 V. Angew Chem Int Ed 2021;60:4682-8.
29. Xue W, Huang M, Li Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy 2021;6:495-505.
30. Li J, Zhang M, Zhang D, Yan Y, Li Z. An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J 2020;402:126195.
31. Du F, Li X, Wu L, et al. Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2. Ceramics Inter 2021;47:12981-91.
32. Zhang M, Wang C, Zhang J, Li G, Gu L. Preparation and electrochemical characterization of La and Al Co-doped NCM811 cathode materials. ACS Omega 2021;6:16465-71.
33. Yoon W, Nam K, Jang D, et al. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD. J Power Sources 2012;217:128-34.
34. Hu D, Du F, Cao H, et al. An effective strategy to control thickness of Al2O3 coating layer on nickel-rich cathode materials. J Electroanal Chem 2021;880:114910.
35. Woo S, Yoon CS, Amine K, Belharouak I, Sun Y. Significant improvement of electrochemical performance of AlF3-Coated LiNi0.8Co0.1Mn0.1O2 Cathode Materials. J Electrochem Soc 2007;154:A1005.
36. Song HG, Kim JY, Kim KT, Park YJ. Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials. J Power Sources 2011;196:6847-55.
37. Cho W, Kim S, Song JH, et al. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J Power Sources 2015;282:45-50.
38. Liu Y, Tang L, Wei H, et al. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019;65:104043.
39. Chen Y, Zhang Y, Chen B, Wang Z, Lu C. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 2014;256:20-7.
40. Ahn J, Jang EK, Yoon S, et al. Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries. Appl Surf Sci 2019;484:701-9.
41. Huang X, Zhu W, Yao J, et al. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. J Mater Chem A 2020;8:17429-41.
42. Yang H, Wu H, Ge M, et al. Simultaneously dual modification of ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Funct Mater 2019;29:1808825.
43. Ming Y, Xiang W, Qiu L, et al. Dual elements coupling effect induced modification from the surface into the bulk lattice for ni-rich cathodes with suppressed capacity and voltage decay. ACS Appl Mater Interfaces 2020;12:8146-56.
44. Wu L, Tang X, Rong Z, et al. Studies on electrochemical reversibility of lithium tungstate coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material under high cut-off voltage cycling. Appl Surf Sci 2019;484:21-32.
45. Gan Z, Lu Y, Hu G, et al. Surface modification on enhancing the high-voltage performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by electrochemically active LiVPO4F hybrid. Electrochim Acta 2019;324:134807.
46. Fan Q, Lin K, Yang S, et al. Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control. J Power Sources 2020;477:228745.
47. Li J, Wang J, Lu X, et al. Enhancing high-potential stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode with PrF3 coating. Ceram Int 2021;47:6341-51.
48. Wang R, Zhang T, Zhang Q, Zheng M, Xu K, Yan W. Enhanced electrochemical performance of La and F co-modified Ni-rich cathode. Ionics 2020;26:1165-71.
49. Yang J, Chen Y, Li Y, et al. A simple strategy to prepare the La2Li0.5Al0.5O4 modified high-performance ni-rich cathode material. Mater Chem Phys 2020;249:123135.
50. Cheng Z, Lv F, Xu N, et al. Enhanced rate performance and cycle stability of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage by Li6.1La3Al0.3Zr2O12 surface modification. Appl Surf Sci 2020;524:146556.
51. Jung C, Kim D, Eum D, et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries. Adv Funct Mater 2021;31:2010095.
52. Qu X, Huang H, Wan T, et al. An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy 2022;91:106665.
53. Liu Y, Zeng T, Li G, et al. The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Mater 2022;52:534-46.
54. Han B, Xu S, Zhao S, et al. Enhancing the structural stability of Ni-Rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer. ACS Appl Mater Interfaces 2018;10:39599-607.
55. Liu S, Chen X, Zhao J, et al. Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J Power Sources 2018;374:149-57.
56. Kim U, Park G, Son B, et al. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat Energy 2020;5:860-9.
57. Fan X, Ou X, Zhao W, et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat Commun 2021;12:5320.
58. Wei K, Zhou L, Wang S, et al. Watermelon-like texture lithium titanate and silicon composite films as anodes for lithium-ion battery with high capacity and long cycle life. J Alloys Compd 2021;885:160994.
59. Shi Y, Zhang Z, Jiang P, et al. Unlocking the potential of P3 structure for practical Sodium-ion batteries by fabricating zero strain framework for Na+ intercalation. Energy Storage Mater 2021;37:354-62.
60. Yu Z, Yu K, Wei J, Lu Q, Cheng Y, Pan Z. Improving electrode properties by sputtering Ge on SiO anode surface. Ceram Int 2022;48:26784-90.
61. Yu Z, Zhou L, Tong J, Guan T, Cheng Y. Improving electrochemical performance of thick silicon film anodes with implanted solid lithium source electrolyte. J Phys Chem Lett 2022;13:8725-32.