REFERENCES
1. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.
2. Yu Y, Xia F, Wang C, et al. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res 2022;15:7868-76.
3. Lu R, Quan C, Zhang C, et al. Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Res 2022;15:6067-75.
4. Jang I, Lee S, Jang J, Ahn M, Yoo SJ. Improved platinum-nickel nanoparticles with dopamine-derived carbon shells for proton exchange membrane fuel cells. Intl J of Energy Res 2022;46:13602-12.
5. Sohn Y, Park JH, Kim P, Joo JB. Dealloyed PtCu catalyst as an efficient electrocatalyst in oxygen reduction reaction. Curr Appl Phys 2015;15:993-9.
6. Wu D, Yang Y, Dai C, Cheng D. Enhanced oxygen reduction activity of PtCu nanoparticles by morphology tuning and transition-metal doping. Int J Hydrog Energy 2020;45:4427-34.
7. Garcia-cardona J, Sirés I, Alcaide F, Brillas E, Centellas F, Cabot PL. Electrochemical performance of carbon-supported Pt(Cu) electrocatalysts for low-temperature fuel cells. Int J Hydrog Energy 2020;45:20582-93.
8. Pavlets A, Alekseenko A, Tabachkova NY, et al. A novel strategy for the synthesis of Pt–Cu uneven nanoparticles as an efficient electrocatalyst toward oxygen reduction. Int J Hydrog Energy 2021;46:5355-68.
9. Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2010;2:454-60.
10. Stephens IE, Bondarenko AS, Perez-Alonso FJ, et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J Am Chem Soc 2011;133:5485-91.
11. Zhao J, Tu Z, Chan SH. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): a review. J Power Sources 2021;488:229434.
12. Bigall NC, Herrmann AK, Vogel M, et al. Hydrogels and aerogels from noble metal nanoparticles. Angew Chem Int Ed Engl 2009;48:9731-4.
13. Wen D, Herrmann AK, Borchardt L, et al. Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J Am Chem Soc 2014;136:2727-30.
14. Du R, Hu Y, Hübner R, et al. Specific ion effects directed noble metal aerogels: versatile manipulation for electrocatalysis and beyond. Sci Adv 2019;5:eaaw4590.
15. Ranmohotti KGS, Gao X, Arachchige IU. Salt-mediated self-assembly of metal nanoshells into monolithic aerogel frameworks. Chem Mater 2013;25:3528-34.
16. Gao X, Esteves RJ, Luong TT, Jaini R, Arachchige IU. Oxidation-induced self-assembly of Ag nanoshells into transparent and opaque Ag hydrogels and aerogels. J Am Chem Soc 2014;136:7993-8002.
17. Gao X, Esteves RJ, Nahar L, Nowaczyk J, Arachchige IU. Direct cross-linking of Au/Ag Alloy nanoparticles into monolithic aerogels for application in surface-enhanced raman scattering. ACS Appl Mater Interfaces 2016;8:13076-85.
18. Nahar L, Farghaly AA, Esteves RJA, Arachchige IU. Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths. Chem Mater 2017;29:7704-15.
19. Naskar S, Freytag A, Deutsch J, et al. Porous aerogels from shape-controlled metal nanoparticles directly from nonpolar colloidal solution. Chem Mater 2017;29:9208-17.
20. Wen D, Liu W, Haubold D, et al. Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 2016;10:2559-67.
21. Wen D, Liu W, Herrmann AK, et al. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small 2016;12:2439-42.
22. Zhu C, Shi Q, Fu S, et al. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv Mater 2016;28:8779-83.
23. Du R, Joswig JO, Fan X, et al. Disturbance-promoted unconventional and rapid fabrication of self-healable noble metal gels for (photo-)electrocatalysis. Matter 2020;2:908-20.
24. Liu W, Herrmann AK, Geiger D, et al. High-performance electrocatalysis on palladium aerogels. Angew Chem Int Ed Engl 2012;51:5743-7.
25. Henning S, Ishikawa H, Kühn L, et al. Unsupported Pt-Ni aerogels with enhanced high current performance and durability in fuel cell cathodes. Angew Chem Int Ed Engl 2017;56:10707-10.
26. Liu W, Rodriguez P, Borchardt L, et al. Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed Engl 2013;52:9849-52.
27. Shi Q, Zhu C, Du D, et al. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances. J Mater Chem A 2017;5:19626-31.
28. Shi Q, Zhu C, Zhong H, et al. Nanovoid incorporated Ir x Cu metallic aerogels for oxygen evolution reaction catalysis. ACS Energy Lett 2018;3:2038-44.
29. Wang H, Wu Y, Luo X, et al. Ternary PtRuCu aerogels for enhanced methanol electrooxidation. Nanoscale 2019;11:10575-80.
30. Shi Q, Zhu C, Tian M, et al. Ultrafine Pd ensembles anchored-Au2Cu aerogels boost ethanol electrooxidation. Nano Energy 2018;53:206-12.
31. Zhu C, Shi Q, Fu S, et al. Core-shell PdPb@Pd aerogels with multiply-twinned intermetallic nanostructures: facile synthesis with accelerated gelation kinetics and their enhanced electrocatalytic properties. J Mater Chem A 2018;6:7517-21.
32. Burpo FJ, Nagelli EA, Morris LA, Mcclure JP, Ryu MY, Palmer JL. Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. J Mater Res 2017;32:4153-65.
33. Yazdan-abad M, Noroozifar M, Modaresi Alam AR, Saravani H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J Mater Chem A 2017;5:10244-9.
34. Yazdan-abad M, Noroozifar M, Douk AS, Modarresi-alam AR, Saravani H. Shape engineering of palladium aerogels assembled by nanosheets to achieve a high performance electrocatalyst. Appl Catal B 2019;250:242-9.
35. Douk A, Saravani H, Noroozifar M. Three-dimensional assembly of building blocks for the fabrication of Pd aerogel as a high performance electrocatalyst toward ethanol oxidation. Electrochim Acta 2018;275:182-91.