REFERENCES
1. Serra-maia R, Michel FM, Kang Y, Stach EA. Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol. ACS Catal 2020;10:5115-23.
2. Chen H, Huang M, Yan W, Bai W, Wang X. Enzymatic regio- and enantioselective C-H oxyfunctionalization of fatty acids. ACS Catal 2021;11:10625-30.
3. Teng Z, Yang N, Lv H, et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 2019;5:664-80.
4. Hwang GB, Huang H, Wu G, et al. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light. Nat Commun 2020;11:1207.
5. Cai J, Huang J, Wang S, et al. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv Mater 2019;31:e1806314.
6. Zhao H, Chen Y, Peng Q, Wang Q, Zhao G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Appl Catal B 2017;203:127-37.
7. Zong X, Chen H, Seger B, et al. Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy Environ Sci 2014;7:3347-51.
8. Shi X, Zhang Y, Siahrostami S, Zheng X. Light-driven BiVO4 -C fuel cell with simultaneous production of H2O2. Adv Energy Mater 2018;8:1801158.
9. Mase K, Yoneda M, Yamada Y, Fukuzumi S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat Commun 2016;7:11470.
10. Liu N, Han M, Sun Y, et al. Ag-C3N4 based photoelectrochemical cell using O2/H2O redox couples. Energy Environ Sci 2018;11:1841-7.
11. Liu J, Zou Y, Jin B, Zhang K, Park JH. Hydrogen peroxide production from solar water oxidation. ACS Energy Lett 2019;4:3018-27.
12. Campos-Martin JM, Blanco-Brieva G, Fierro JL. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl 2006;45:6962-84.
13. Kim HW, Bukas VJ, Park H, et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal 2020;10:852-63.
14. Zhang T, Sun L, Sun X, Dong H, Yu H, Yu H. Radical and non-radical cooperative degradation in metal-free electro-Fenton based on nitrogen self-doped biochar. J Hazard Mater 2022;435:129063.
15. He C, Sankarasubramanian S, Ells A, et al. Self-anchored platinum-decorated antimony-doped-tin oxide as a durable oxygen reduction electrocatalyst. ACS Catal 2021;11:7006-17.
16. Siahrostami S, Verdaguer-casadevall A, Karamad M, et al. Erratum: enabling direct H2O2 production through rational electrocatalyst design. Nature Mater 2014;13:213-213.
17. Flaherty DW. Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: current understanding, outstanding questions, and research needs. ACS Catal 2018;8:1520-7.
18. Chen Y, Gao R, Ji S, et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew Chem Int Ed Engl 2021;60:3212-21.
19. Melchionna M, Fornasiero P, Prato M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv Mater 2019;31:e1802920.
20. Li BQ, Zhao CX, Liu JN, Zhang Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv Mater 2019;31:e1808173.
21. Jiang K, Back S, Akey AJ, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun 2019;10:3997.
22. Lu Z, Chen G, Siahrostami S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 2018;1:156-62.
23. Lim JS, Kim JH, Woo J, et al. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem 2021;7:3114-30.
24. Wang W, Tao Y, Fan J, et al. Fullerene-graphene acceptor drives ultrafast carrier dynamics for sustainable CdS photocatalytic hydrogen evolution. Adv Funct Materials 2022;32:2201357.
25. Dong K, Liang J, Wang Y, et al. Honeycomb carbon nanofibers: a superhydrophilic O2 -entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew Chem Int Ed Engl 2021;60:10583-7.
26. San Roman D, Krishnamurthy D, Garg R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis. ACS Catal 2020;10:1993-2008.
27. Sun Y, Sinev I, Ju W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal 2018;8:2844-56.
28. Wu Y, Gao Z, Feng Y, et al. Harnessing selective and durable electrosynthesis of H2O2 over dual-defective yolk-shell carbon nanosphere toward on-site pollutant degradation. Appl Catal B 2021;298:120572.
29. Zhao X, Lei Y, Fang P, et al. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction. Nano Energy 2019;66:104168.
30. Zhang Y, Pan D, Tao Y, et al. Photoelectrocatalytic reduction of CO2 to syngas via SnOx -enhanced Cu2O nanowires photocathodes. Adv Funct Mater 2022;32:2109600.
31. Yan J, Wang Y, Zhang Y, Xia S, Yu J, Ding B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv Mater 2021;33:e2007525.
32. Yuan S, Li Y, Peng J, et al. Conversion of methane into liquid fuels-bridging thermal catalysis with electrocatalysis. Adv Energy Mater 2020;10:2002154.
33. Shen Q, Chen Z, Huang X, Liu M, Zhao G. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays. Environ Sci Technol 2015;49:5828-35.
34. Yang D, Yu H, He T, et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat Commun 2019;10:3844.
35. Lu M, Zhang M, Liu CG, et al. Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew Chem Int Ed Engl 2021;60:4864-71.
36. Yang H, Yang D, Zhou Y, Wang X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J Am Chem Soc 2021;143:13721-30.
37. Zhong H, Zhang Q, Wang J, et al. Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal 2018;8:3965-70.
38. Chen Z, Zhao J, Cabrera CR, Chen Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019;3:1800368.
39. Pei Z, Zhao J, Huang Y, et al. Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. J Mater Chem A 2016;4:12205-11.
40. Zhao X, Pan D, Chen X, et al. g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Appl Surf Sci 2019;467-468:658-65.
41. Kofuji Y, Isobe Y, Shiraishi Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J Am Chem Soc 2016;138:10019-25.
42. Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T. Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal 2015;5:3058-66.
43. Chu C, Zhu Q, Pan Z, et al. Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production. Proc Natl Acad Sci USA 2020;117:6376-82.
44. Liu Y, Li Q, Lian Z, et al. Polarization field promoted photoelectrocatalysis for synergistic environmental remediation and H2 production. Chem Eng J 2022;437:135132.
45. Zeng X, Liu Y, Kang Y, et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal 2020;10:3697-706.
46. Hou H, Zeng X, Zhang X. Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed Engl 2020;59:17356-76.
47. Desalegn BZ, Jadhav HS, Seo JG. Highly efficient g-C3N4 nanorods with dual active sites as an electrocatalyst for the oxygen evolution reaction. ChemCatChem 2019;11:2870-8.
48. Zhang P, Tong Y, Liu Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew Chem Int Ed Engl 2020;59:16209-17.
49. Wang H, Jia J, Song P, et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem Int Ed Engl 2017;56:7847-52.
50. Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci 2018;11:2581-9.
51. Dan R, Chen W, Xiao Z, et al. N-doped biomass carbon/reduced graphene oxide as a high-performance anode for sodium-ion batteries. Energy Fuels 2020;34:3923-30.
52. Shen X, Xiao F, Zhao H, et al. In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-fenton process. Environ Sci Technol 2020;54:4564-72.
53. Zhang D, Liu T, Yin K, Liu C, Wei Y. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics. Chem Eng J 2020;383:123184.
54. Watzele S, Hauenstein P, Liang Y, et al. Determination of electroactive surface area of Ni-, Co-, Fe-, and Ir-based oxide electrocatalysts. ACS Catal 2019;9:9222-30.
55. Jakešová M, Apaydin DH, Sytnyk M, et al. Hydrogen-Bonded organic semiconductors as stable photoelectrocatalysts for efficient hydrogen peroxide photosynthesis. Adv Funct Mater 2016;26:5248-54.
56. Wang M, Dong X, Meng Z, et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew Chem Int Ed Engl 2021;60:11190-5.
57. Hu J, Wang S, Yu J, Nie W, Sun J, Wang S. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-fenton performance in wastewater treatment. Environ Sci Technol 2021;55:1260-9.
58. Wang W, Tao Y, Du L, et al. Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl Catal B 2021;282:119568.