REFERENCES
1. Xia C, Mi Y, Wang B, Lin B, Chen G, Zhu B. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat Commun 2019;10:1707.
2. Lee KM, Lai CW, Ngai KS, Juan JC. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 2016;88:428-48.
3. D’agostino D, Di Giorgio C, Bobba F, et al. Effects of cobalt substitution on ZnO surface reactivity and electronic structure. J Mater Chem C 2019;7:8364-73.
4. Xia C, Qiao Z, Shen L, et al. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO. Int J Hydrog Energy 2018;43:12825-34.
5. Shah MY, Rauf S, Mushtaq N, et al. Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °C. Int J Hydrog Energy 2020;45:14470-9.
6. Shah MAKY, Zhu B, Rauf S, et al. Electrochemical properties of a Co-doped SrSnO3-δ -based semiconductor as an electrolyte for solid oxide fuel cells. ACS Appl Energy Mater 2020;3:6323-33.
7. Shah MAKY, Rauf S, Zhu B, et al. Semiconductor Nb-doped SrTiO3-δ perovskite electrolyte for a ceramic fuel cell. ACS Appl Energy Mater 2021;4:365-75.
8. Shah MAKY, Rauf S, Mushtaq N, et al. Novel perovskite semiconductor based on Co/Fe-codoped LBZY (La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3-δ) as an electrolyte in ceramic fuel cells. ACS Appl Energy Mater 2021;4:5798-808.
9. Rauf S, Zhu B, Shah MY, et al. Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3-δ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renew Energy 2021;172:336-49.
10. Mushtaq N, Lu Y, Xia C, et al. Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3-δ perovskite oxide for enhanced oxygen reduction catalytic performance. J Catal 2021;395:168-77.
11. Tayyab Z, Rauf S, Xia C, et al. Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2 -Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport. ACS Appl Energy Mater 2021;4:8922-32.
12. Rauf S, Zhu B, Yousaf Shah MAK, et al. Application of a triple-conducting heterostructure electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-δ and Ca0.04Ce0.80Sm0.16O2-δ in a high-performance low-temperature solid oxide fuel cell. ACS Appl Mater Interfaces 2020;12:35071-80.
13. Shah MY, Tayyab Z, Rauf S, et al. Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell. Int J Hydrog Energy 2021;46:33969-77.
14. Mushtaq N, Lu Y, Xia C, et al. Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure. Appl Catal B 2021;298:120503.
15. Xing Y, Hu E, Wang F, et al. Cubic silicon carbide/zinc oxide heterostructure fuel cells. Appl Phys Lett 2020;117:162105.
16. Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci 2016;9:1602-44.
17. Zhu B, Raza R, Qin H, Liu Q, Fan L. Fuel cells based on electrolyte and non-electrolyte separators. Energy Environ Sci 2011;4:2986.
18. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38:253-78.
19. Xing Y, Wu Y, Li L, et al. Proton Shuttles in CeO2/CeO2-δ core-shell structure. ACS Energy Lett 2019;4:2601-7.
20. Dong W, Tong Y, Zhu B, et al. Semiconductor TiO2 thin film as an electrolyte for fuel cells. J Mater Chem A 2019;7:16728-34.
21. Agrawal A, Dar TA, Phase DM, Sen P. Type I and type II band alignments in ZnO/MgZnO bilayer films. Appl Phys Lett 2014;105:081603.
22. Yousaf Shah MA, Mushtaq N, Rauf S, Xia C, Zhu B. The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells. Int J Hydrog Energy 2019;44:30319-27.
23. Chen G, Sun W, Luo Y, et al. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int J Hydrog Energy 2018;43:417-25.
24. Chen G, Sun W, Luo Y, et al. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS Appl Mater Interfaces 2019;11:10642-50.
25. Rahman A, Harunsani MH, Tan AL, Ahmad N, Hojamberdiev M, Khan MM. Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies. Bioprocess Biosyst Eng 2021;44:875-89.
26. Choudhary MK, Kataria J, Sharma S. Novel green biomimetic approach for preparation of highly stable Au-ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Nano Mater 2018;1:1870-8.
27. Platonov VB, Rumyantseva MN, Frolov AS, Yapryntsev AD, Gaskov AM. High-temperature resistive gas sensors based on ZnO/SiC nanocomposites. Beilstein J Nanotechnol 2019;10:1537-47.
28. Ievtushenko A, Khyzhun O, Shtepliuk I, Tkach V, Lazorenko V, Lashkarev G. X-ray photoelectron spectroscopy study of nitrogen and aluminum-nitrogen doped ZnO films. Acta Phys Pol A 2013;124:858-61.
29. Fan W, Li H, Zhao F, et al. Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem Commun 2016;52:5316-9.
30. Chang FM, Brahma S, Huang JH, Wu ZZ, Lo KY. Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods. Sci Rep 2019;9:905.
31. Mushtaq N, Xia C, Dong W, et al. Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3-δ-Sm0.25Ce0.75O2-δ heterostructure for fast ionic transport. ACS Appl Mater Interfaces 2019;11:38737-45.
32. Lu Y, Zhu B, Shi J, Yun S. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Mater 2021;1:100007.
33. Zhu B, Mi Y, Xia C, et al. Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell: material and technology. Energy Mater 2021;1:100002.
34. Zhu B, Wang B, Wang Y, et al. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 2017;37:195-202.
35. Yousaf M, Lu Y, Hu E, et al. Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications. J Colloid Interface Sci 2022;608:1868-81.
36. Song L, Li T, Zhang S. Synthesis and characterization of Ag/AgBrO 3 photocatalyst with high photocatalytic activity. Mater Chem Phys 2016;182:119-24.
37. Lacerda LHDS, de Lazaro SR. Isomorphic substitution and intermediary energy levels: a new application of DFT modelling and semiconductor theory to describe p-n type junctions interface in heterostructures: isomorphic substitution in ZnO/BTO. Phys Status Solidi B 2017;254:1700119.
38. Catti M, Noel Y, Dovesi R. Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations. J Phys Chem Solids 2003;64:2183-90.