REFERENCES

1. Xu Z, Wang R, Yang C. Perspectives for low-temperature waste heat recovery. Energy 2019;176:1037-43.

2. Gur I, Sawyer K, Prasher R. Engineering. Searching for a better thermal battery. Science 2012;335:1454-5.

3. Cui P, Yu M, Liu Z, Zhu Z, Yang S. Energy, exergy, and economic (3E) analyses and multi-objective optimization of a cascade absorption refrigeration system for low-grade waste heat recovery. Energy Convers Manag 2019;184:249-61.

4. Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat Mater 2019;18:608-13.

5. Ying P, He R, Mao J, et al. Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nat Commun 2021;12:1121.

6. Gerkman MA, Han GG. Toward controlled thermal energy storage and release in organic phase change materials. Joule 2020;4:1621-5.

7. Nazir H, Batool M, Bolivar Osorio FJ, et al. Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf 2019;129:491-523.

8. Shi G, Aye L, Li D, Du X. Recent advances in direct expansion solar assisted heat pump systems: a review. Renew Sust Energy Rev 2019;109:349-66.

9. da Cunha J, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials - a review. Appl Energy 2016;177:227-38.

10. Chen X, Cheng P, Tang Z, Xu X, Gao H, Wang G. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv Sci 2021;8:2001274.

11. Chen X, Tang Z, Liu P, Gao H, Chang Y, Wang G. Smart utilization of multifunctional metal oxides in phase change materials. Matter 2020;3:708-41.

12. Lu Y, Yu D, Dong H, et al. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. Nat Commun 2022;13:1397.

13. Kashyap V, Sakunkaewkasem S, Jafari P, et al. Full spectrum solar thermal energy harvesting and storage by a molecular and phase-change hybrid material. Joule 2019;3:3100-11.

14. Tang Z, Gao H, Chen X, Zhang Y, Li A, Wang G. Advanced multifunctional composite phase change materials based on photo-responsive materials. Nano Energy 2021;80:105454.

15. Xu WC, Sun S, Wu S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew Chem Int Ed Engl 2019;58:9712-40.

16. Qiu Q, Shi Y, Han GGD. Solar energy conversion and storage by photoswitchable organic materials in solution, liquid, solid, and changing phases. J Mater Chem C 2021;9:11444-63.

17. Fei L, Yin Y, Yang M, Zhang S, Wang C. Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Stor Mater 2021;42:636-44.

18. Xu X, Wang G. Molecular solar thermal systems towards phase change and visible light photon energy storage. Small 2022;18:e2107473.

19. Hu J, Huang S, Yu M, Yu H. Flexible solar thermal fuel devices: composites of fabric and a photoliquefiable azobenzene derivative. Adv Energy Mater 2019;9:1901363.

20. Gerkman MA, Gibson RSL, Calbo J, Shi Y, Fuchter MJ, Han GGD. Arylazopyrazoles for long-term thermal energy storage and optically triggered heat release below 0 °C. J Am Chem Soc 2020;142:8688-95.

21. Zhang ZY, He Y, Wang Z, et al. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J Am Chem Soc 2020;142:12256-64.

22. Xu X, Zhang P, Wu B, et al. Photochromic dendrimers for photoswitched solid-to-liquid transitions and solar thermal fuels. ACS Appl Mater Interfaces 2020;12:50135-42.

23. Xu X, Wu B, Zhang P, et al. Arylazopyrazole-based dendrimer solar thermal fuels: stable visible light storage and controllable heat release. ACS Appl Mater Interfaces 2021;13:22655-63.

24. Shi Y, Gerkman MA, Qiu Q, Zhang S, Han GGD. Sunlight-activated phase change materials for controlled heat storage and triggered release. J Mater Chem A 2021;9:9798-808.

25. Qiu Q, Gerkman MA, Shi Y, Han GGD. Design of phase-transition molecular solar thermal energy storage compounds: compact molecules with high energy densities. Chem Commun 2021;57:9458-61.

26. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 2007;129:260-1.

27. Bellotto S, Reuter R, Heinis C, Wegner HA. Synthesis and photochemical properties of oligo-ortho-azobenzenes. J Org Chem 2011;76:9826-34.

28. Victor JG, Torkelson JM. On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques. Macromolecules 1987;20:2241-50.

29. Saydjari AK, Weis P, Wu S. Spanning the solar spectrum: azopolymer solar thermal fuels for simultaneous UV and visible light storage. Adv Energy Mater 2017;7:1601622.

30. Weis P, Hess A, Kircher G, et al. Effects of spacers on photoinduced reversible solid-to-liquid transitions of azobenzene-containing polymers. Chemistry 2019;25:10946-53.

31. Chen M, Yao B, Kappl M, et al. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators. Adv Funct Mater 2019;30:1906752.

32. Zhou H, Xue C, Weis P, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem 2017;9:145-51.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/