REFERENCES
2. Bi Z, Guo X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater 2022;2:200011.
3. Yang Z, Qin X, Lin K, et al. Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion. Carbon 2022;187:321-9.
4. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 2019;21:308-34.
5. Wang G, He P, Fan L. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery. Adv Funct Mater 2021;31:2007198.
6. Wu J, Yuan L, Zhang W, Li Z, Xie X, Huang Y. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ Sci 2021;14:12-36.
8. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019;18:1278-91.
9. Bi Z, Huang W, Mu S, Sun W, Zhao N, Guo X. Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes. Nano Energy 2021;90:106498.
10. Tan S, Zeng X, Ma Q, Wu X, Guo Y. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energ Rev 2018;1:113-38.
11. Ibrahim S, Yassin MM, Ahmad R, Johan MR. Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 2011;17:399-405.
12. Zhou Q, Zhang J, Cui G. Rigid-flexible coupling polymer electrolytes toward high-energy lithium batteries. Macromol Mater Eng 2018;303:1800337.
13. Choudhury S, Stalin S, Vu D, et al. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 2019;10:4398.
14. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017;33:363-86.
15. Wang C, Wang T, Wang L, et al. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv Sci 2019;6:1901036.
16. Yang X, Jiang M, Gao X, et al. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group? Energy Environ Sci 2020;13:1318-25.
17. Chen L, Li Y, Li S, Fan L, Nan C, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.
18. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.
20. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO-Alternative host materials for Li+ -conducting solid polymer electrolytes. Prog Polym Sci 2018;81:114-43.
21. Zhang J, Yang J, Dong T, et al. Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective. Small 2018;14:e1800821.
22. Xu H, Xie J, Liu Z, Wang J, Deng Y. Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: solid polymer electrolytes. MRS Energy Sustainability 2020;7:E2.
23. Sun B, Mindemark J, Edström K, Brandell D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochem Commun 2015;52:71-4.
24. Jung YC, Park MS, Kim DH, Ue M, Eftekhari A, Kim DW. Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries. Sci Rep 2017;7:17482.
25. Sun B, Mindemark J, Edström K, Brandell D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 2014;262:738-42.
26. Liu W, Liu N, Sun J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 2015;15:2740-5.
27. Fan L, He H, Nan C. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat Rev Mater 2021;6:1003-19.
28. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 2019;9:1804004.
29. Liu X, Ding G, Zhou X, et al. An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J Mater Chem A 2017;5:11124-30.
30. Zekoll S, Marriner-edwards C, Hekselman AKO, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ Sci 2018;11:185-201.
31. Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries. Adv Energy Mater 2020;10:1903939.
32. Zeng C, Lee LJ. Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 2001;34:4098-103.
33. Lin-gibson S, Bencherif S, Antonucci JM, Jones RL, Horkay F. Synthesis and characterization of poly(ethylene glycol) dimethacrylate hydrogels. Macromol Symp 2005;227:243-54.
34. Nair JR, Destro M, Bella F, Appetecchi GB, Gerbaldi C. Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. J Power Sources 2016;306:258-67.
35. Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. J Am Chem Soc 2016;138:15825-8.
36. Zhang N, Wang G, Feng M, Fan L. In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries. J Mater Chem A 2021;9:4018-25.
38. Oh B, Vissers D, Zhang Z, West R, Tsukamoto H, Amine K. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery. J Power Sources 2003;119-121:442-7.
39. Ju J, Wang Y, Chen B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Appl Mater Interfaces 2018;10:13588-97.
40. Bi Z, Mu S, Zhao N, Sun W, Huang W, Guo X. Cathode supported solid lithium batteries enabling high energy density and stable cyclability. Energy Storage Mater 2021;35:512-9.
41. Zhou D, He Y, Liu R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv Energy Mater 2015;5:1500353.
42. Yue L, Ma J, Zhang J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 2016;5:139-64.
43. Du F, Zhao N, Li Y, Chen C, Liu Z, Guo X. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J Power Sources 2015;300:24-8.
44. Jia M, Zhao N, Huo H, Guo X. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochem Energ Rev 2020;3:656-89.
45. Huang W, Zhao N, Bi Z, et al. Can we find solution to eliminate Li penetration through solid garnet electrolytes? Mater Today Nano 2020;10:100075.
46. Alarco PJ, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater 2004;3:476-81.
47. Zhang X, Cheng X, Chen X, Yan C, Zhang Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater 2017;27:1605989.
48. Yan C, Cheng X, Tian Y, et al. Lithium metal anodes: dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition (Adv. Mater. 25/2018). Adv Mater 2018;30:1870181.
49. Yang Z, Qin X, Lin K, Cai Q, Fu Y, Li B. Surface passivated Li Si with improved storage stability as a prelithiation reagent in anodes. Electrochem Commun 2022;138:107272.