REFERENCES

1. Watanabe N. Two types of graphite fluorides, CF.n and C2F.n, and discharge characteristics and mechanisms of electrodes of CF.n and C2F.n in lithium batteries. Solid State Ionics 1980;1:87-110.

2. Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 1975;5:63-9.

3. Wang L, Wu Z, Zou J, et al. Li-free cathode materials for high energy density lithium batteries. Joule 2019;3:2086-102.

4. Dey AN. Experimental optimization of Li/SOCl2 primary cells with respect to the electrolyte and the cathode compositions. J Electrochem Soc 1976;123:1262-1264. Available from: https://iopscience.iop.org/article/10.1149/1.2133057/meta [Last accessed on 26 Jul 2022.

5. Whittingham MS. Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 1978;12:41-99.

6. Xiao Q, Yang J, Wang X, et al. Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: progress and perspective. Carbon Energy 2021;3:271-302.

7. Hua X, Eggeman AS, Castillo-Martínez E, et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat Mater 2021;20:841-50.

8. Xiao AW, Lee HJ, Capone I, et al. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nat Mater 2020;19:644-54.

9. Karki K, Wu L, Ma Y, et al. Revisiting conversion reaction mechanisms in lithium batteries: lithiation-driven topotactic transformation in FeF2. J Am Chem Soc 2018;140:17915-22.

10. Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 2017;10:435-59.

11. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.

12. Tao J, Yan Z, Yang J, Li J, Lin Y, Huang Z. Boosting the cell performance of the SiO x @C anode material via rational design of a Si-valence gradient. Carbon Energy 2022;4:129-41.

13. Yamakawa N, Jiang M, Key B, Grey CP. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 2009;131:10525-36.

14. Li C, Mu X, van Aken PA, Maier J. A high-capacity cathode for lithium batteries consisting of porous microspheres of highly amorphized iron fluoride densified from its open parent phase. Adv Energy Mater 2013;3:113-9.

15. Gu W, Magasinski A, Zdyrko B, Yushin G. Metal fluorides nanoconfined in carbon nanopores as reversible high capacity cathodes for Li and Li-ion rechargeable batteries: FeF2 as an example. Adv Energy Mater 2015;5:n/a-n/a.

16. Li L, Meng F, Jin S. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett 2012;12:6030-7.

17. Wang X, Gu W, Lee JT, et al. Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: effect of electrolyte on cycle stability. Small 2015;11:5164-73.

18. Wang Y, Xu H, Zhong J, et al. Hierarchical Ni/Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anode. Energy Mater 2021;1:100012.

19. Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 2003;15:736-9.

20. Ma D, Cao Z, Wang H, Huang X, Wang L, Zhang X. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ Sci 2012;5:8538.

21. Makimura Y, Rougier A, Tarascon J. Pulsed laser deposited iron fluoride thin films for lithium-ion batteries. Appl Surf Sci 2006;252:4587-92.

22. Zhang H, Zhou Y, Sun Q, Fu Z. Nanostructured nickel fluoride thin film as a new Li storage material. Solid State Sci 2008;10:1166-72.

23. Li C, Gu L, Tsukimoto S, van Aken PA, Maier J. Low-temperature ionic-liquid-based synthesis of nanostructured iron-based fluoride cathodes for lithium batteries. Adv Mater 2010;22:3650-4.

24. Gonzalo E, Kuhn A, García-alvarado F. On the room temperature synthesis of monoclinic Li3FeF6: a new cathode material for rechargeable lithium batteries. J Power Sources 2010;195:4990-6.

25. Li C, Gu L, Tong J, Tsukimoto S, Maier J. A mesoporous iron-based fluoride cathode of tunnel structure for rechargeable lithium batteries. Adv Funct Mater 2011;21:1391-7.

26. Cui Y, Xue M, Zhou Y, Peng S, Wang X, Fu Z. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium. Electrochim Acta 2011;56:2328-35.

27. Wang F, Robert R, Chernova NA, et al. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J Am Chem Soc 2011;133:18828-36.

28. Rangan S, Thorpe R, Bartynski RA, et al. Conversion reaction of FeF2 thin films upon exposure to atomic lithium. J Phys Chem C 2012;116:10498-503.

29. Liu P, Vajo JJ, Wang JS, Li W, Liu J. Thermodynamics and Kinetics of the Li/FeF3 reaction by electrochemical analysis. J Phys Chem C 2012;116:6467-73.

30. Zhao X, Hayner CM, Kung MC, Kung HH. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries. Chem Commun 2012;48:9909-11.

31. Li C, Yin C, Gu L, et al. An FeF(3)·0.5H2O polytype: a microporous framework compound with intersecting tunnels for Li and Na batteries. J Am Chem Soc 2013;135:11425-8.

32. Chu Q, Xing Z, Tian J, et al. Facile preparation of porous FeF3 nanospheres as cathode materials for rechargeable lithium-ion batteries. J Power Sources 2013;236:188-91.

33. Li C, Yin C, Mu X, Maier J. Top-down synthesis of open framework fluoride for lithium and sodium batteries. Chem Mater 2013;25:962-9.

34. Parkinson MF, Ko JK, Halajko A, Sanghvi S, Amatucci GG. Effect of vertically structured porosity on electrochemical performance of FeF2 films for lithium batteries. Electrochim Acta 2014;125:71-82.

35. Duttine M, Dambournet D, Penin N, et al. Tailoring the composition of a mixed anion iron-based fluoride compound: evidence for anionic vacancy and electrochemical performance in lithium cells. Chem Mater 2014;26:4190-9.

36. Tan J, Liu L, Hu H, et al. Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries. J Power Sources 2014;251:75-84.

37. Li B, Cheng Z, Zhang N, Sun K. Self-supported, binder-free 3D hierarchical iron fluoride flower-like array as high power cathode material for lithium batteries. Nano Energy 2014;4:7-13.

38. Lu Y, Wen ZY, Jin J, Wu XW, Rui K. Size-controlled synthesis of hierarchical nanoporous iron based fluorides and their high performances in rechargeable lithium ion batteries. Chem Commun 2014;50:6487-90.

39. Lu Y, Wen Z, Jin J, Rui K, Wu X. Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries. Phys Chem Chem Phys 2014;16:8556-62.

40. Ma D, Wang H, Li Y, et al. In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries. Nano Energy 2014;10:295-304.

41. Hua X, Robert R, Du L, et al. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J Phys Chem C 2014;118:15169-84.

42. Bao T, Zhong H, Zheng H, Zhan H, Zhou Y. In-situ synthesis of FeF3/graphene composite for high-rate lithium secondary batteries. Electrochim Acta 2015;176:215-21.

43. Zhao T, Li L, Chen R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 2015;15:164-76.

44. Hu X, Ma M, Mendes RG, et al. Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes. J Mater Chem A 2015;3:23930-5.

45. Li A, Wu S, Yang Y, Zhu Z. Structural and electronic properties of Li-ion battery cathode material MoF3 from first-principles. J Solid State Chem 2015;227:25-9.

46. Bai Y, Zhou X, Jia Z, et al. Understanding the combined effects of microcrystal growth and band gap reduction for Fe(1-)TiF3 nanocomposites as cathode materials for lithium-ion batteries. Nano Energy 2015;17:140-51.

47. Chen C, Xu X, Chen S, et al. The preparation and characterization of iron fluorides polymorphs FeF3·0.33H2O and β-FeF3∙3H2O as cathode materials for lithium-ion batteries. Mater Res Bull 2015;64:187-93.

48. Li L, Jacobs R, Gao P, et al. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 2016;138:2838-48.

49. Jiang J, Li L, Xu M, Zhu J, Li CM. FeF3@thin nickel ammine nitrate matrix: smart configurations and applications as superior cathodes for Li-ion batteries. ACS Appl Mater Interfaces 2016;8:16240-7.

50. Rui K, Wen Z, Lu Y, Shen C, Jin J. Anchoring nanostructured manganese fluoride on few-layer graphene nanosheets as anode for enhanced lithium storage. ACS Appl Mater Interfaces 2016;8:1819-26.

51. Hu J, Zhang Y, Cao D, Li C. Dehydrating bronze iron fluoride as a high capacity conversion cathode for lithium batteries. J Mater Chem A 2016;4:16166-74.

52. Rao R, Pralong V, Varadaraju U. Facile synthesis and reversible lithium insertion studies on hydrated iron trifluoride FeF3·0.33H2O. Solid State Sci 2016;55:77-82.

53. Rui K, Wen Z, Jin J, Huang X. Controlled construction of 3D hierarchical manganese fluoride nanostructures via an oleylamine-assisted solvothermal route with high performance for rechargeable lithium ion batteries. RSC Adv 2016;6:27170-6.

54. Sun H, Zhou H, Xu Z, Ding J, Yang J, Zhou X. Preparation of anhydrous iron fluoride with porous fusiform structure and its application for Li-ion batteries. Microporous Mesoporous Mater 2017;253:10-7.

55. Li Y, Yao F, Cao Y, Yang H, Feng Y, Feng W. The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material for high power lithium ion batteries. Electrochim Acta 2017;253:545-53.

56. Bai Y, Zhou X, Zhan C, et al. 3D Hierarchical nano-flake/micro-flower iron fluoride with hydration water induced tunnels for secondary lithium battery cathodes. Nano Energy 2017;32:10-8.

57. Seo JK, Cho H, Takahara K, et al. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res 2017;10:4232-44.

58. Guntlin CP, Zünd T, Kravchyk KV, Wörle M, Bodnarchuk MI, Kovalenko MV. Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. J Mater Chem A 2017;5:7383-93.

59. Groult H, Neveu S, Leclerc S, et al. Nano-CoF3 prepared by direct fluorination with F2 gas: application as electrode material in Li-ion battery. J Fluor Chem 2017;196:117-27.

60. Tong W, Amatucci GG. Silver copper fluoride: a novel perovskite cathode for lithium batteries. J Power Sources 2017;362:86-91.

61. Zhang M. Fabrication of Li2NiF4-PEDOT nanocomposites as conversion cathodes for lithium-ion batteries. J Alloys Compd 2017;723:139-45.

62. Yang Z, Zhao S, Pan Y, et al. Atomistic insights into FeF3 nanosheet: an ultrahigh-rate and long-life cathode material for Li-ion batteries. ACS Appl Mater Interfaces 2018;10:3142-51.

63. Zhai J, Lei Z, Rooney D, Wang H, Sun K. Self-templated fabrication of micro/nano structured iron fluoride for high-performance lithium-ion batteries. J Power Sources 2018;396:371-8.

64. Zhao E, Borodin O, Gao X, et al. Lithium-iron (III) fluoride battery with double surface protection. Adv Energy Mater 2018;8:1800721.

65. Li W, Groult H, Borkiewicz OJ, Dambournet D. Decomposition of CoF3 during battery electrode processing. J Fluor Chem 2018;205:43-8.

66. Jung S, Hwang I, Cho S, et al. New iron-based intercalation host for lithium-ion batteries. Chem Mater 2018;30:1956-64.

67. Tang Z, Park JH, Kim SH, et al. Synthesis of Cu7S4 nanoparticles: role of halide ions, calculation, and electrochemical properties. J Alloys Compd 2018;764:333-40.

68. Zhao Y, Wei K, Wu H, et al. LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode. ACS Nano 2019;13:2490-500.

69. Omenya F, Zagarella NJ, Rana J, et al. Intrinsic challenges to the electrochemical reversibility of the high energy density copper(II) fluoride cathode material. ACS Appl Energy Mater 2019;2:5243-53.

70. Wang Q, Yang Z, Liu H, Wang X, Shi X. Atomically tailoring vacancy defects in FeF2.2(OH)0.8 toward ultra-high rate and long-life Li/Na-ion batteries. J Mater Chem A 2019;7:14180-91.

71. Huang Q, Turcheniuk K, Ren X, et al. Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversion-type cathodes. Adv Energy Mater 2019;9:1803323.

72. Chen G, Zhou X, Bai Y, et al. Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed. Nano Energy 2019;56:884-92.

73. Zhu W, Chong S, Sun J, et al. The enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 through coating MnF2 nano protective layer. Energy Technol 2019;7:1900443.

74. Zhou H, Sun H, Wang T, et al. Low temperature nanotailoring of hydrated compound by alcohols: FeF3·3H2O as an example. Preparation of NAnosized FeF3·0.33H2O cathode material for Li-ion batteries. Inorg Chem 2019;58:6765-71.

75. Liu M, Liu L, Li M, et al. Preparation and Li/Na ion storage performance of raspberry-like hierarchical FeF3·0.33H2O micro-sized spheres with controllable morphology. J Alloys Compd 2020;829:154215.

76. Kim SW, Seo DH, Gwon H, Kim J, Kang K. Fabrication of FeF3 Nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. Adv Mater 2010;22:5260-4.

77. Badway F, Mansour AN, Pereira N, et al. Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 2007;19:4129-41.

78. Zhou H, Ruther RE, Adcock J, Zhou W, Dai S, Nanda J. Controlled formation of mixed nanoscale domains of high capacity Fe2O3-FeF3 conversion compounds by direct fluorination. ACS Nano 2015;9:2530-9.

79. Su H, Jiang Z, Liu Y, et al. Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater 2022;2:200005.

80. Zhou J, Zhang D, Zhang X, Song H, Chen X. Carbon-nanotube-encapsulated FeF2 nanorods for high-performance lithium-ion cathode materials. ACS Appl Mater Interfaces 2014;6:21223-9.

81. Lee JT, Kim H, Oschatz M, et al. Micro- and mesoporous carbide-derived carbon-selenium cathodes for high-performance lithium selenium batteries. Adv Energy Mater 2015;5:1400981.

82. Bashir T, Ismail SA, Song Y, et al. A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater 2021;1:100019.

83. Kim S, Liu J, Sun K, Wang J, Dillon SJ, Braun PV. Improved performance in FeF2 conversion cathodes through use of a conductive 3D scaffold and Al2O3 ALD coating. Adv Funct Mater 2017;27:1702783.

84. Levi MD, Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J Phys Chem B 1997;101:4641-7.

85. Badway F, Cosandey F, Pereira N, Amatucci GG. Carbon metal fluoride nanocomposites. J Electrochem Soc 2003;150:A1318.

86. Amatucci GG, Pereira N. Fluoride based electrode materials for advanced energy storage devices. J Fluor Chem 2007;128:243-62.

87. Wu W, Wang Y, Wang X, et al. Structure and electrochemical performance of FeF3/V2O5 composite cathode material for lithium-ion battery. J Alloys Compd 2009;486:93-6.

88. Nishijima M, Gocheva ID, Okada S, Doi T, Yamaki J, Nishida T. Cathode properties of metal trifluorides in Li and Na secondary batteries. J Power Sources 2009;190:558-62.

89. Concheso A, Santamaría R, Menéndez R, et al. Iron-carbon composites as electrode materials in lithium batteries. Carbon 2006;44:1762-72.

90. Prakash R, Mishra AK, Roth A, et al. A ferrocene-based carbon-iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries. J Mater Chem 2010;20:1871.

91. Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2012;2:781-94.

92. He C, Cheng J, Liu Y, Zhang X, Wang B. Thin-walled hollow fibers for flexible high energy density fiber-shaped supercapacitors. Energy Mater 2021;1:100010.

93. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.

94. Atar N, Eren T, Yola ML, Gerengi H, Wang S. Fe@Ag nanoparticles decorated reduced graphene oxide as ultrahigh capacity anode material for lithium-ion battery. Ionics 2015;21:3185-92.

95. Shao Y, Jin Z, Li J, Meng Y, Huang X. Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use. Energy Mater 2022;2:200004.

96. Ma R, Lu Z, Wang C, et al. Large-scale fabrication of graphene-wrapped FeF3 nanocrystals as cathode materials for lithium ion batteries. Nanoscale 2013;5:6338-43.

97. Liu J, Wan Y, Liu W, et al. Mild and cost-effective synthesis of iron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes. J Mater Chem A 2013;1:1969-75.

98. Qiu D, Fu L, Zhan C, Lu J, Wu D. Seeding iron trifluoride nanoparticles on reduced graphite oxide for lithium-ion batteries with enhanced loading and stability. ACS Appl Mater Interfaces 2018;10:29505-10.

99. Ma R, Wang M, Tao P, et al. Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J Mater Chem A 2013;1:15060.

100. Kim YK, Lee JK, Kim J. FeF 3 Nanoparticles embedded in activated carbon foam (ACF) as a cathode material with enhanced electrochemical performance for lithium ion batteries: FeF3/ACF nanocomposites as cathode. Bull Korean Chem Soc 2015;36:1878-84.

101. Kim T, Jae WJ, Kim H, Park M, Han J, Kim J. A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF3 nanoparticles prepared by facile polymerization. J Mater Chem A 2016;4:14857-64.

102. Huang T, Long M, Xiao JX, Liu H, Wang G. Recent research on emerging organic electrode materials for energy storage. Energy Mater 2021;1:100009.

103. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 0<x<-1.: a new cathode material for batteries of high energy density. Mater Res Bull 1980;15:783-789.

104. Zhang L, Chen Y. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater 2021;1:100004.

105. Mishra A, Bäuerle P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed Engl 2012;51:2020-67.

106. Lu C, Dong C, Wu H, et al. Achieving high capacity hybrid-cathode FeF3@Li2C6O6/rGO based on morphology control synthesis and interface engineering. Chem Commun 2018;54:3235-8.

107. Reddy MA, Breitung B, Kiran Chakravadhanula VS, et al. Facile synthesis of C-FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage. RSC Adv 2018;8:36802-11.

108. Fu W, Zhao E, Sun Z, Ren X, Magasinski A, Yushin G. Iron fluoride-carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv Funct Mater 2018;28:1801711.

109. Wu F, Chen S, Srot V, et al. A sulfur-limonene-based electrode for lithium-sulfur batteries: high-performance by self-protection. Adv Mater 2018;30:e1706643.

110. Wu F, Srot V, Chen S, et al. 3D honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery. Adv Mater 2019;31:e1905146.

111. Yu R, Wang X, Fu Y, et al. Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J Mater Chem A 2016;4:4941-51.

112. Luo C, Zhu Y, Wen Y, Wang J, Wang C. Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium ion batteries. Adv Funct Mater 2014;24:4082-9.

113. Wu W, Wang X, Wang X, Yang S, Liu X, Chen Q. Effects of MoS2 doping on the electrochemical performance of FeF3 cathode materials for lithium-ion batteries. Mater Lett 2009;63:1788-90.

114. Zhang R, Wang X, Wei S, Wang X, Liu M, Hu H. Iron fluoride microspheres by titanium dioxide surface modification as high capacity cathode of Li-ion batteries. J Alloys Compd 2017;719:331-40.

115. Zhang W, Ma L, Yue H, Yang Y. Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries. J Mater Chem 2012;22:24769.

116. Liu L, Zhou M, Yi L, et al. Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion batteries. J Mater Chem 2012;22:17539.

117. Zhang Z, Yang Z, Li Y, Wang X. Revealing the doping mechanism and effect of cobalt on the HTB-type iron fluoride: a first-principle study. J Phys Chem Solids 2018;123:87-96.

118. Ali G, Rahman G, Chung KY. Cobalt-doped pyrochlore-structured iron fluoride as a highly stable cathode material for lithium-ion batteries. Electrochim Acta 2017;238:49-55.

119. Huang Q, Pollard TP, Ren X, et al. Fading mechanisms and voltage hysteresis in FeF2 -NiF2 solid solution cathodes for lithium and lithium-ion batteries. Small 2019;15:e1804670.

120. Villa C, Kim S, Lu Y, Dravid VP, Wu J. Cu-substituted NiF2 as a cathode material for Li-ion batteries. ACS Appl Mater Interfaces 2019;11:647-54.

121. Li J, Xu L, Wei K, et al. In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition. Ionics 2020;26:3367-75.

122. Wang F, Kim SW, Seo DH, et al. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nat Commun 2015;6:6668.

123. Devaraju MK, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater 2012;2:284-97.

124. Li C, Lin J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 2010;20:6831.

125. Xiao Y, Xu R, Xu L, Ding J, Huang J. Recent advances on anion-derived sei for fast-charging and stable lithium batteries. Energy Mater 2021;1:100013.

126. Song H, Cui H, Wang C. Extremely high-rate capacity and stable cycling of a highly ordered nanostructured carbon-FeF2 battery cathode. J Mater Chem A 2015;3:22377-84.

127. Zhang H, Yu X, Guo D, et al. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors. ACS Appl Mater Interfaces 2013;5:7335-40.

128. Zhang Q, Zhang Y, Yin Y, Fan L, Zhang N. Packing FeF3·0.33H2O into porous graphene/carbon nanotube network as high volumetric performance cathode for lithium ion battery. J Power Sources 2020;447:227303.

129. Tang Y, An J, Xing H, et al. Synthesis of iron-fluoride materials with controlled nanostructures and composition through a template-free solvothermal route for lithium ion batteries. New J Chem 2018;42:9091-7.

130. Krahl T, Marroquin Winkelmann F, Martin A, Pinna N, Kemnitz E. Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries. Chemistry 2018;24:7177-87.

131. Li J, Xu S, Huang S, Lu L, Lan L, Li S. In situ synthesis of Fe(1-x)CoxF3/MWCNT nanocomposites with excellent electrochemical performance for lithium-ion batteries. J Mater Sci 2018;53:2697-708.

132. Zhu YJ, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 2014;114:6462-555.

133. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry 2005;11:440-52.

134. Ding K, Miao Z, Liu Z, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. J Am Chem Soc 2007;129:6362-3.

135. Martin A, Doublet M, Kemnitz E, Pinna N. Reversible sodium and lithium insertion in iron fluoride perovskites. Adv Funct Mater 2018;28:1802057.

136. Mackenzie JD, Bescher EP. Chemical routes in the synthesis of nanomaterials using the sol-gel process. Acc Chem Res 2007;40:810-8.

137. Carlo L, Conte DE, Kemnitz E, Pinna N. Microwave-assisted fluorolytic sol-gel route to iron fluoride nanoparticles for Li-ion batteries. Chem Commun 2014;50:460-2.

138. Tawa S, Sato Y, Orikasa Y, Matsumoto K, Hagiwara R. Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol-gel method: its electrochemical behavior and charge-discharge mechanism as a cathode material for lithium secondary batteries. J Power Sources 2019;412:180-8.

139. Pividori MI, Merkoçi A, Alegret S. Dot-blot amperometric genosensor for detecting a novel determinant of beta-lactamase resistance in Staphylococcus aureus. Analyst 2001;126:1551-7.

140. Pópolo MG, Voth GA. On the structure and dynamics of ionic liquids. J Phys Chem B 2004;108:1744-52.

141. Carriazo D, Serrano MC, Gutiérrez MC, Ferrer ML, del Monte F. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 2012;41:4996-5014.

142. Wasserscheid P. Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 2000;39:3772-3789.

143. Ghandi K. A review of ionic liquids, their limits and applications. Green Sustain Chem 2014;04:44-53.

144. Li B, Rooney DW, Zhang N, Sun K. An in situ ionic-liquid-assisted synthetic approach to iron fluoride/graphene hybrid nanostructures as superior cathode materials for lithium ion batteries. ACS Appl Mater Interfaces 2013;5:5057-63.

145. Choi NS, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 2012;51:9994-10024.

146. Li C, Chen K, Zhou X, Maier J. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput Mater 2018:4.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/