REFERENCES

1. Li W, Song B, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 2017;46:3006-59.

2. Lu H, Tian K, Bu L, et al. Synergistic effect from coaxially integrated CNTs@MoS2/MoO2 composite enables fast and stable lithium storage. J Energy Chem 2021;55:449-58.

3. Roselin LS, Juang RS, Hsieh CT, et al. Recent advances and perspectives of carbon-based nanostructures as anode materials for Li-ion batteries. Materials 2019;12:1229.

4. Ding B, Cai Z, Ahsan Z, et al. A review of metal silicides for lithium-ion battery anode application. Acta Metall Sin 2021;34:291-308.

5. Lingfei C, Liu Y, Zhang G, Zhang R. Mesoporous MoO2-carbon nanocomposites synthesized by triconstituent co-assembly approach for high performance lithium-ion batteries. Microporous Mesoporous Mater 2021;327:111427.

6. Ding J, Abbas SA, Hanmandlu C, et al. Facile synthesis of carbon/MoO3 nanocomposites as stable battery anodes. J Power Sources 2017;348:270-80.

7. Bai J, Zhao B, Zhou J, et al. Improved electrochemical performance of ultrathin MoS2 nanosheet/Co composites for lithium-ion battery anodes. ChemElectroChem 2019;6:1930-8.

8. Yao J, Liu B, Ozden S, et al. 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim Acta 2015;176:103-11.

9. Chong S, Sun L, Shu C, et al. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019;63:103868.

10. Chong S, Wei X, Wu Y, et al. Expanded MoSe2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl Mater Interfaces 2021;13:13158-69.

11. Ju Z, Zhang E, Zhao Y, et al. One-pot hydrothermal synthesis of FeMoO4 nanocubes as an anode material for lithium-ion batteries with excellent electrochemical performance. Small 2015;11:4753-61.

12. Park GD, Hong JH, Lee JK, Kang YC. Yolk-shell-structured microspheres composed of N-doped-carbon-coated NiMoO4 hollow nanospheres as superior performance anode materials for lithium-ion batteries. Nanoscale 2019;11:631-8.

13. Park J, Cho JS, Kang YC. Scalable synthesis of NiMoO4 microspheres with numerous empty nanovoids as an advanced anode material for Li-ion batteries. J Power Sources 2018;379:278-87.

14. Gao L, Chen G, Zhang L, Yan B, Yang X. Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors. Electrochimica Acta 2021;379:138185.

15. Jiang S, Huang R, Zhu W, et al. Free-Standing SnO2@rGO anode via the anti-solvent-assisted precipitation for superior lithium storage performance. Front Chem 2019;7:878.

16. Zhang J, Lee G, Wing-hei Lau V, et al. Electrochemical grinding-induced metallic assembly exploiting a facile conversion reaction route of metal oxides toward Li ions. Acta Materialia 2021;211:116863.

17. Tan X, Wu Y, Lin X, et al. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg Chem Front 2020;7:4939-55.

18. Bashir T, Ismail SA, Song Y, et al. A review of the energy storage aspects of chemical elements for lithium-ion based batteries. Energy Mater 2021;1:100019.

19. Chen Y, Wang Y, Yang H, et al. Facile synthesis of porous hollow Co3O4 microfibers derived-from metal-organic frameworks as an advanced anode for lithium ion batteries. Ceram Int 2017;43:9945-50.

20. Tian K, Lu H, Bu L, et al. Exploring lithium storage mechanism and cycling stability of Bi2Mo3O12 binary metal oxide anode composited with Ti3C2MXene. Batteries Supercaps 2020;3:1296-305.

21. Wang H, Zou B, Tang Z, Wen Z, Chen C. Enhancing cyclability and rate performance of Li2MoO4 by carbon coating. Mater Lett 2016;177:54-7.

22. Liu X, Zhao Y, Dong Y, et al. Synthesis of one dimensional Li2MoO4 nanostructures and their electrochemical performance as anode materials for lithium-ion batteries. Electrochim Acta 2015;174:315-26.

23. Huang S, Zhou M, Wang K, Cheng S, Yan G, Jiang K. Electrochemical synthesis of Li-Mo-O compounds as novel and high performance anode materials for lithium-ion batteries. J Alloys Compd 2017;712:555-9.

24. Zhang J, Li R, Chen Q, Zhao G, Jia J. Porous carbon-coated Li2MoO4 as high-performance anode materials for lithium-ion batteries. Mater Lett 2018;233:302-5.

25. Liu X, Lyu Y, Zhang Z, et al. Nanotube Li2MoO4: a novel and high-capacity material as a lithium-ion battery anode. Nanoscale 2014;6:13660-7.

26. Barinova O, Kirsanova S, Sadovskiy A, Avetissov I. Properties of Li2MoO4 single crystals grown by Czochralski technique. J Cryst Growth 2014;401:853-6.

27. Bal S. Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Mater Des (1980-2015) 2010;31:2406-13.

28. Stampfer C, Bürli A, Jungen A, Hierold C. Raman imaging for processing and process monitoring for nanotube devices. phys stat sol 2007;244:4341-5.

29. Han D, Hwang S, Bak S, Nam K. Controlling MoO2 and MoO3 phases in MoOx/CNTs nanocomposites and their application to anode materials for lithium-ion batteries and capacitors. Electrochim Acta 2021;388:138635.

30. Zheng F, Ou X, Pan Q, et al. Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem Eng J 2018;334:497-507.

31. Zhang X, Liu G, Zhou K, et al. Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine. Energy Mater 2021;1:100005.

32. Hao J, Zhang J, Xia G, et al. Heterostructure manipulation via in situ localized phase transformation for high-rate and highly durable lithium ion storage. ACS Nano 2018;12:10430-8.

33. Zhang H, Wu T, Wang K, et al. Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. J Mater Chem A 2013;1:12038.

34. Zhang H, Shu J, Wang K, et al. Lithiation mechanism of hierarchical porous MoO2 nanotubes fabricated through one-step carbothermal reduction. J Mater Chem A 2014;2:80-6.

35. Duan L, Li X. Lithiated Mo4O11 to improve excellent cycle stability of MoO2 nanoparticles for lithium-ion battery. Synthetic Metals 2021;272:116672.

36. Maier J. Thermodynamics of electrochemical lithium storage. Angew Chem Int Ed Engl 2013;52:4998-5026.

37. Tang W, Peng CX, Nai CT, et al. Ultrahigh capacity due to multi-electron conversion reaction in reduced graphene oxide-wrapped MoO2 porous nanobelts. Small 2015;11:2446-53.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/