REFERENCES

1. Bae J, Shin D, Jeong H, et al. Facet-dependent Mn doping on shaped Co3O4 crystals for catalytic oxidation. ACS Catal 2021;11:11066-74.

2. Chen C, Su H, Lu L, et al. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem Eng J 2021;408:127814.

3. Liu Y, Deng H, Lu Z, Zhong X, Zhu Y. The study of MnO2 with different crystalline structures for U(VI) elimination from aqueous solution. J Mol Liquids 2021;335:116296.

4. Xiao X, Hu X, Liang Y, et al. Anchoring NiCo2O4 nanowhiskers in biomass-derived porous carbon as superior oxygen electrocatalyst for rechargeable Zn-air battery. J Power Sources 2020;476:228684.

5. Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 2019;62:550-87.

6. Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv Sci (Weinh) 2018;5:1700691.

7. Yin M, Miao H, Chen B, et al. Self-supported metal sulfide electrode for flexible quasi-solid-state zinc-air batteries. J Alloys Compd 2021;878:160434.

8. Cheng H, Chen JM, Li QJ, et al. A modified molecular framework derived highly efficient Mn-Co-carbon cathode for a flexible Zn-air battery. Chem Commun (Camb) 2017;53:11596-9.

9. Yang Z, Zheng C, Wei Z, et al. Multi-dimensional correlation of layered Li-rich Mn-based cathode materials. Energy Mater 2022;2:200006.

10. Xu N, Liu J, Qiao J, Huang H, Zhou X. Interweaving between MnO2 nanowires/nanorods and carbon nanotubes as robust multifunctional electrode for both liquid and flexible electrochemical energy devices. J Power Sources 2020;455:227992.

11. Xu N, Nie Q, Luo L, et al. Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries. ACS Appl Mater Interfaces 2019;11:578-87.

12. Lee S, Nam G, Sun J, et al. Enhanced intrinsic catalytic activity of λ-MnO2 by electrochemical tuning and oxygen vacancy generation. Angew Chem Int Ed 2016;55:8599-604.

13. Xu N, Zhang Y, Wang M, et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019;65:104021.

14. Xu N, Zhang Y, Wang Y, et al. Hierarchical bifunctional catalysts with tailored catalytic activity for high-energy rechargeable Zn-air batteries. Appl Energy 2020;279:115876.

15. Singh A, Ojha AK. Designing vertically aligned porous NiCo2O4@MnMoO4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2020;580:720-9.

16. Li A, Kong S, Guo C, et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal 2022;5:109-18.

17. Xu N, Cai Y, Peng L, et al. Superior stability of a bifunctional oxygen electrode for primary, rechargeable and flexible Zn-air batteries. Nanoscale 2018;10:13626-37.

18. Wang XT, Ouyang T, Wang L, Zhong JH, Ma T, Liu ZQ. Redox-Inert Fe3+ ions in octahedral sites of Co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries. Angew Chem Int Ed 2019;58:13291-6.

19. Gangadharan PK, Bhange SN, Kabeer N, Illathvalappil R, Kurungot S. NiCo2O4 nanoarray on CNT sponge: a bifunctional oxygen electrode material for rechargeable Zn–air batteries. Nanoscale Adv 2019;1:3243-51.

20. Kumar R. NiCo2O4 nano-/microstructures as high-performance biosensors: a review. Nanomicro Lett 2020;12:122.

21. Yang C, Gao N, Wang X, et al. Phosphate boosting stable efficient seawater splitting on porous NiFe (oxy)hydroxide@NiMoO4 Core-Shell micropillar electrode. Energy Mater 2021;1:100015.

22. Ma TY, Dai S, Qiao SZ. Self-supported electrocatalysts for advanced energy conversion processes. Mater Today 2016;19:265-73.

23. Ye L, Hong Y, Liao M, et al. Recent advances in flexible fiber-shaped metal-air batteries. Energy Stor Mater 2020;28:364-74.

24. Pei Z, Yuan Z, Wang C, et al. A flexible rechargeable zinc-air battery with excellent low-temperature adaptability. Angew Chem Int Ed 2020;59:4793-9.

25. Wang B, Chen Y, Wang X, et al. A microwave-assisted bubble bursting strategy to grow Co8FeS8/CoS heterostructure on rearranged carbon nanotubes as efficient electrocatalyst for oxygen evolution reaction. J Power Sources 2020;449:227561.

26. Xu N, Zhang Y, Zhang T, Liu Y, Qiao J. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries. Nano Energy 2019;57:176-85.

27. Xu N, Liu Y, Zhang X, et al. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Sci Rep 2016;6:33590.

28. Xu N, Wilson JA, Wang Y, et al. Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Appl Catal B-Environ 2020;272:118953.

29. Wang A, Hu Y, Wang H, et al. Activating inverse spinel NiCo2O4 embedded in N-doped carbon nanofibers via Fe substitution for bifunctional oxygen electrocatalysis. Mater Today Phys 2021;17:100353.

30. Ma R, Lin G, Ju Q, et al. Edge-sited Fe-N4 atomic species improve oxygen reduction activity via boosting O2 dissociation. Appl Catal B: Environ 2020;265:118593.

31. Singh T, Das C, Bothra N, et al. MOF Derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting. Inorg Chem 2020;59:3160-70.

32. Wang Z, Ang J, Liu J, et al. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl Catal B: Environ 2020;263:118344.

33. Xie W, Li J, Song Y, Li S, Li J, Shao M. Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nanomicro Lett 2020;12:97.

34. Zhang X, Han X, Jiang Z, et al. Atomically dispersed hierarchically ordered porous Fe-N-C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-air battery. Nano Energy 2020;71:104547.

35. Zheng X, Cao X, Sun Z, et al. Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl Catal B: Environ 2020;272:118967.

36. Wang Q, Xue Y, Sun S, Yan S, Miao H, Liu Z. Facile synthesis of ternary spinel Co-Mn-Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. J Power Sources 2019;435:226761.

37. Deng Y, Jiang Y, Luo D, et al. Hierarchical porous double-shelled electrocatalyst with tailored lattice alkalinity toward bifunctional oxygen reactions for metal-air batteries. ACS Energy Lett 2017;2:2706-12.

38. Su HY, Gorlin Y, Man IC, et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys Chem Chem Phys 2012;14:14010-22.

39. Chen Z, Yu A, Ahmed R, Wang H, Li H, Chen Z. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 2012;69:295-300.

40. Han C, Zhang T, Li J, Li B, Lin Z. Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy 2020;77:105165.

41. Han J, Meng X, Lu L, Wang ZL, Sun C. Triboelectric nanogenerators powered electrodepositing tri-functional electrocatalysts for water splitting and rechargeable zinc-air battery: a case of Pt nanoclusters on NiFe-LDH nanosheets. Nano Energy 2020;72:104669.

42. Wang Y, Li Z, Zhang P, et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021;87:106147.

43. Wang Z, Huang J, Wang L, et al. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew Chem Int Ed 2022;61:e202114696.

44. Yan L, Xu Z, Hu W, Ning J, Zhong Y, Hu Y. Formation of sandwiched leaf-like CNTs-Co/ZnCo2O4@NC-CNTs nanohybrids for high-power-density rechargeable Zn-air batteries. Nano Energy 2021;82:105710.

45. Zhang Z, Sun H, Li J, et al. S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. J Power Sources 2021;491:229584.

46. Tao B, He J, Miao F, Zhang Y. MnO2/NiCo2O4 loaded on nickel foam as a high-performance electrode for advanced asymmetric supercapacitor. Vacuum 2022;195:110668.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/